Федеральное государственное бюджетное учреждение науки Институт земной коры Сибирского отделения Российской академии наук

На правах рукописи

Ефремова Ульяна Сергеевна

Геодинамическая эволюция центральной части Байкальского выступа фундамента Сибирской платформы в протерозое

Специальность: 1.6.1. – Общая и региональная геология. Геотектоника и геодинамика

Диссертация на соискание ученой степени кандидата геолого-минералогических наук

> Научный руководитель: доктор геол.-мин. наук Т.В. Донская

Иркутск - 2024

Оглавление

ВВЕДЕНИЕ4
Глава 1. Геологическое строение района работ 12
1.1. Основные тектонические структуры Сибирского кратона 12
1.2. Геологическое строение Байкальского выступа фундамента
Сибирской платформы16
1.3. Геологическое строение Сарминского сегмента Байкальского
выступа21
Глава 2. Аналитические методы исследования терригенных пород 26
Глава 3. Характеристика раннепротерозойских терригенных пород
Байкальского выступа29
3.1. История изученности терригенных пород, относимых к сарминской
серии
3.2. Харгитуйская свита 33
3.2.1. Результаты исследования возраста детритовых цирконов 36
3.2.2. Петрографическая характеристика
3.2.3. Геохимическая характеристика
3.2.4. Геодинамические условия формирования и источники вещества
3.3. Иликтинская свита 59
3.3.1. Петрографическая характеристика 60
3.3.2. Геохимическая характеристика
3.3.3. Результаты исследования возраста детритовых цирконов 69
3.3.4. Геодинамические условия формирования и источники вещества

3.4. Анайская свита79
3.4.1. Петрографическая характеристика
3.4.2. Геохимическая характеристика
3.4.3. Результаты исследования возраста детритовых цирконов 83
3.4.4. Геодинамические условия формирования и источники вещества
3.5. Обсуждение результатов и выводы
Глава 4. Модель геодинамической эволюции центральной части
Байкальского выступа фундамента Сибирской платформы
ЗАКЛЮЧЕНИЕ95
Список литературы
Приложение 1113
Приложение 2117
Приложение 3
Приложение 4
Приложение 5

ВВЕДЕНИЕ

Актуальность исследования

Временной интервал от 2.2 до 1.8 млрд лет являлся одним из ключевых периодов в мировой геологической истории, в течение которого архейские кратонные блоки в разной степени испытали влияние орогенических событий (Zhao et al., 2002, 2004). В этот период было сформировано значительное количество крупных раннепротерозойских орогенных поясов и произошло объединение архейских кратонных блоков в более крупные единицы – древние кратоны (Zhao et al., 2002, 2004; Hawkesworth et al., 2013; Condie et al., 2017; Elming et al., 2021). В связи с тем, что орогенные пояса являются основными индикаторами сборки древних кратонов, то расшифровка их эволюции позволяет надежно обосновать и проинтерпретировать основные этапы становления структуры и последующей эволюции докембрийских кратонов.

Сибирский кратон, формирование которого имело место на временном интервале 2.00–1.85 млрд лет, представляет собой структуру, состоящую из архейских раннепротерозойских супертеррейнов, И разделенных раннепротерозойскими орогенными поясами и шовными зонами (Розен, 2003; Глебовицкий и др., 2008; Rosen et al., 1994; Gladkochub et al., 2006; Smelov, Timofeev, 2007; Pisarevsky et al., 2008; Donskaya, 2020; Priyatkina et al., 2020). B настоящее время имеется неоднозначность точек зрения в вопросах выделения и интерпретации орогенных поясов в пределах Сибирского кратона, поэтому любая информация об особенностях эволюции этих структур, разделяющих крупные архейские супертеррейны, позволяет приблизиться к пониманию процессов становления собственно Сибирского кратона. Раннепротерозойский Акитканский орогенный пояс выделяется на нескольких тектонических схемах Сибирского кратона в виде структуры, разделяющей архейские Анабарский и Алданский супертеррейны (Розен, 2003; Rosen et al., 1994; Gladkochub et al., 2006; Pisarevsky et al., 2008; Donskaya, 2020). Породы, относимые к Акитканскому орогенному поясу, выходят на поверхность в южной части Сибирского кратона в пределах

Байкальского выступа фундамента. Акитканский орогенный пояс представляет собой гетерогенную структуру, в пределах которой выделяются четыре основных региональных тектонических сегмента (Голоустенский, Сарминский, Чуйский и Тонодский), отличающихся друг от друга возрастом и составом метаморфических и магматических пород, степенью метаморфической переработки и геодинамическими условиями образования. Предполагается, что объединение пород этих тектонических сегментов в единую структуру Акитканского орогенного пояса имело место на интервале 2.00–1.95 млрд лет (Donskaya, 2020).

Объектом настоящего исследования наиболее стали древние метатерригенные образования, распространенные в пределах Сарминского сегмента Акитканского орогенного пояса, выделяемые в составе сарминской серии. Интерес к изучению этих пород обусловлен тем, что благодаря широкому применению таких методов датирования, как лазерная абляция с массспектрометром с индуктивно-связанной плазмой (LA-ICP-MS), стало возможным установление возраста и источников вещества древних осадочных толщ. Актуальность изучения раннедокембрийских осадочных толщ в пределах центральной части Акитканского орогенного пояса состоит в том, что получение новых данных с привлечением современных прецизионных методик, а также комплексное геологическое, петрографическое, геохимическое И геохронологическое изучение терригенных пород способствует заполнению пробелов при интерпретации разных этапов эволюции Акитканского орогенного пояса, как одной из важнейших структур Сибирского кратона.

Цель и основные задачи исследования

Целью данного исследования является создание модели геодинамической эволюции Сарминского сегмента Акитканского орогенного пояса Сибирского кратона (центральной части Байкальского выступа фундамента Сибирской платформы) в протерозойское время.

Для достижения указанной цели были поставлены и решены следующие задачи:

- Сбор и анализ опубликованных геологических данных по рассматриваемому региону.
- 2. Проведение полевых геологических исследований и отбор каменного материала из пород сарминской серии.
- 3. Проведение детальных петрографических, геохимических и изотопных исследований терригенных пород, относимых к сарминской серии.
- 4. Проведение U-Pb (LA-ICP-MS) исследования зерен детритового циркона из пород сарминской серии.
- 5. Интерпретация полученных данных и их сопоставление с опубликованными материалами.
- Выделение основных этапов в геодинамической эволюции Сарминского сегмента Акитканского орогенного пояса Сибирского кратона (центральной части Байкальского выступа фундамента Сибирской платформы) в протерозое.

Фактический материал и методы исследования

В основе работы лежат материалы, собранные автором в процессе полевых работ 2021–2022 гг. В ходе проведения полевых исследований были изучены коренные обнажения и собран каменный материал в пределах выходов пород раннепротерозойской сарминской серии. Полевые исследования были проведены на территории Ольхонского района Иркутской области и сосредоточены к северу и югу от пос. Онгурен, где обнаруживаются коренные выходы пород как харгитуйской, так и иликтинской свит, на правом борту р. Малая Иликта, где обнажаются породы иликтинской свиты, а также на обоих бортах р. Анга к западу от пос. Еланцы, где также известны выходы пород харгитуйской свиты. Кроме того, часть каменного материала была получена автором от коллег и наставников по лаборатории.

В ходе настоящего исследования было изучено более 90 петрографических шлифов пород сарминской серии, а также определены содержания петрогенных оксидов и концентрации редких и редкоземельных элементов в 80 пробах. Определение изотопного состава Nd выполнено для 5 проб. U-Pb изотопный анализ зерен циркона выполнен в 10 пробах терригенных пород сарминской серии.

Определение содержаний петрогенных оксидов выполнено методом силикатного анализа в ЦКП «Геодинамика и геохронология» ИЗК СО РАН (г. Иркутск). Определение концентраций редких и редкоземельных элементов проведено рентгенофлуоресцентным и ICP-MS методами в ЦКП «Геодинамика и геохронология» ИЗК СО РАН и ОПЦКП «Ультрамикроанализ» ЛИН СО РАН. Sm-Nd изотопные исследования выполнены в ИЗК СО РАН. U-Pb изотопный анализ зерен детритового циркона проводился методом LA-ICP-MS в ЦКП «Геодинамика и геохронология» ИЗК СО РАН и ЦКП «Геоспектр» Геологического института им. Н.Л. Добрецова СО РАН (г. Улан-Удэ) (одна проба).

При интерпретации результатов, кроме авторских данных, полученных в ходе проведения настоящего исследования, использовались материалы из опубликованных работ, которые включали в себя результаты геологического картирования масштаба 1:200 000 и 1:1 000 000, а также данные специальных стратиграфических, геохронологических, петрологических и геодинамических исследований, проведенных как для всей южной окраины Сибирского кратона, так в пределах рассматриваемого региона.

Личный вклад

Автор принимала участие в экспедиционных полевых работах, включающих сбор каменного материала. Автором самостоятельно были проведены описание петрографических шлифов и подготовка проб для аналитических исследований. При непосредственном участии автора были проведены пробоподготовка и геохронологические исследования зерен детритового циркона методом LA-ICP-MS на квадрупольном масс-спектрометре Agilent 7900 в центре коллективного пользования «Геодинамика и геохронология» ИЗК СО РАН. Автор самостоятельно провела комплексную обработку и интерпретацию полевых, аналитических и ранее опубликованных данных, а также сформулировала основные научные выводы диссертационной работы.

Научная новизна

- Впервые с использованием современных аналитических методов проведены комплексные петрографические, изотопно-геохимические и геохронологические исследования терригенных пород, относимых к раннепротерозойской сарминской серии Акитканского орогенного пояса Сибирского кратона.
- На основании совокупности полученных данных установлено время формирования, источники и условия осадконакопления терригенных пород, относимых к сарминской серии.
- 3. Впервые приведены доказательства, что в единую харгитуйскую свиту сарминской серии были объединены породы разного возраста.
- Впервые предложена модель геодинамической эволюции Сарминского сегмента Акитканского орогенного пояса Сибирского кратона (центральная часть Байкальского выступа фундамента Сибирской платформы) в протерозое.

Практическая значимость

Полученные в ходе проведения данного исследования результаты могут быть использованы при составлении геологических карт и стратиграфических схем нового поколения. Кроме того, полученные данные могут использоваться для глобальных палеогеодинамических реконструкций докембрийских суперконтинентов.

Защищаемые положения

 В стратоподразделение, выделяемое как харгитуйская свита сарминской серии, объединены метаморфизованные породы, сформировавшиеся на следующих временных интервалах: 2.7–2.5 млрд лет, 2.15–1.95 млрд лет и 1.00–0.72 млрд лет.

- Накопление терригенных пород иликтинской свиты сарминской серии происходило в период 1.95–1.91 млрд лет в обстановке растяжения после завершения коллизионных событий и формирования структуры Акитканского орогенного пояса Сибирского кратона.
- 3. Выделены основные этапы становления структуры центральной части Байкальского выступа фундамента Сибирской платформы: 2.9 млрд лет – образование архейского блока, 2.7–2.5 млрд лет – накопление ранних осадочных толщ на архейском основании, 2.15–1.95 млрд лет – накопление пород раннепротерозойского чехла, 1.98–1.95 млрд лет – метаморфизм и формирование Акитканского орогенного пояса, 1.95– 1.91 млрд лет – накопление терригенных пород в обстановке растяжения, 1.88–1.84 млрд дет – постколлизионный магматизм, 1.00– 0.72 млрд лет – накопление зрелых терригенных пород во внутриконтинентальных бассейнах.

Апробация работы и публикации

Результаты, полученные в ходе проведения данного исследования, изданы в 10 печатных изданиях, в том числе в 5 статьях в рецензируемых научных журналах (Геодинамика и тектонофизика; Геология и геофизика; Геохимия; Доклады Российской академии наук. Науки о Земле):

 Ефремова У.С., Донская Т.В., Мазукабзов А.М., Гладкочуб Д.П., Хубанов
В.Б. Положение анайской свиты в разрезе протерозоя Байкальского выступа фундамента Сибирской платформы. Геодинамика и тектонофизика, 2023. – Т. 14. – № 2. – 0695.

2. Донская Т.В., Гладкочуб Д.П., Мазукабзов А.М., Демонтерова Е.И., Ефремова У.С. Геохимические критерии разделения протерозойских долеритов даек центральной части Байкальского выступа фундамента Сибирского кратона. Геохимия, 2023. – Т. 68. – № 5. – С. 488–507.

3. Efremova U.S., Donskaya T.V., Gladkochub D.P., Mazukabzov A.M., Ivanov A.V., Bryansky N.V., 2024. Division of the Early Proterozoic Khargitui Formation of the

Sarma Group (Akitkan Orogenic Belt, Siberian Craton) into different age sequences based on the results of U–Pb isotopic analysis of zircon. Doklady Earth Science, 2024. – V. 517. – N 1. – P. 1119–1125.

4. Ефремова У.С., Донская Т.В., Гладкочуб Д.П., Мазукабзов А.М., Иванов А.В., Брянский Н.В. Раннепротерозойские отложения иликтинской свиты как индикаторы эволюции Акитканского орогена (юг Сибирского кратона). Геология и геофизика, 2024. – Т. 65. – № 5. – С. 631–654.

5. Донская Т.В., Гладкочуб Д.П., Котов А.Б., Сальникова Е.Б., Бадашкова Е.Е., Мазукабзов А.М., Ковач В.П., Ефремова У.С. Возраст и петрогенезис раннепротерозойских диоритов даек Байкальского выступа фундамента Сибирского кратона. Геология и геофизика, 2024. – Т. 65.

Основные выводы, сделанные в рамках настоящего исследования, были представлены на всероссийских и международных конференциях: Всероссийское научное совещание «Геодинамическая эволюция литосферы Центрально-Азиатского подвижного пояса: от океана к континенту» (г. Иркутск, 2021, 2022, 2023 гг.); Всероссийское молодежное совещание «Строение литосферы и геодинамика» (г. Иркутск, 2021, 2023 гг.); VI Всероссийская молодежная научная конференция, посвященная памяти академика Н.Л. Добрецова (г. Улан-Удэ, 2021 г.); VIII Российская конференция по изотопной геохронологии (г. Санкт-Петербург, 2022 г.); X International Siberian Early Career GeoScientists Conference: Proceedings of the Conference (Novosibirsk, 2022); Geological International Student Summit (СПбГУ, г. Санкт-Петербург, 2022, 2023 гг.).

Исследования по теме диссертационной работы выполнялись в лаборатории палеогеодинамики ИЗК СО РАН в рамках выполнения планов НИР ИЗК СО РАН, а также проектов РНФ (№№ 18-17-00101 и 23-17-00196).

Структура и объем работы

Работа состоит из введения, четырех глав, заключения, списка литературы и приложений, общим объемом 161 страница, 34 рисунка и 5 таблиц. Список литературы включает 107 источников.

Благодарности

Автор выражает глубокую признательность своему научному руководителю д.г.-м.н. Татьяне Владимировне Донской за неоценимый вклад в познания автора в области геологии Прибайкалья, всестороннюю помощь на каждом этапе проделанной работы, за ценные наставления и безоговорочную поддержку.

Особую благодарность автор выражает своим наставникам и коллегам по лаборатории за ценные консультации и помощь в сборе каменного материала чл.корр. РАН, д.г.-м.н. Д.П. Гладкочубу, д.г.-м.н. А.М. Мазукабзову, к.г.-м.н. З.Л. Мотовой. Автор искренне признательна профессору РАН, д.г.-м.н. А.В. Иванову и к.ф.-м.н. Н.В. Брянскому за помощь в освоении методики U-Pb датирования методом LA-ICP-MS. Большой вклад в познания автора в области петрографии метаморфических и осадочных пород внесла Т.А. Корнилова, за что автор выражает ей большую благодарность. За проведение изотопно-геохимических Sm-Nd-исследований, а также за всестороннюю поддержку автор признательна к.г.м.н. Е.И. Демонтеровой. Неоценимая помощь в обучении и проведении пробоподготовки для разных видов исследований была оказана И.Г. Барашом, к.г.м.н. Е.А. Михеевой и Е.А. Гладкочубом, за что автор искренне благодарна.

Отдельную благодарность автор выражает сотруднику Геологического института СО РАН к.г.-м.н. В.Б. Хубанову за проведение геохронологических исследований.

Также автор благодарит сотрудников ЦКП «Геодинамика и геохронология» Института земной коры СО РАН за оперативное и качественное выполнение аналитических исследований.

Глава 1. Геологическое строение района работ

1.1. Основные тектонические структуры Сибирского кратона

Сибирский кратон (фундамент Сибирской платформы) является одной из крупнейших и ключевых докембрийских структур Северной Евразии. Сибирский кратон граничит с палеозойскими и мезозойскими складчатыми областями: Таймыро-Североземельской (на севере), Верхояно-Чукотской (на востоке), Монголо-Охотской (на юго-востоке) и Центрально-Азиатским складчатым поясом (на юге-юго-западе) (Розен, 2003; Глебовицкий и др., 2008).

Сибирский кратон представляет собой коллаж из отдельных крупных тектонических блоков (супертеррейнов или мегаблоков), разделенных орогенными поясами и шовными зонами. В настоящее время существует несколько отличных друг от друга тектонических схем внутренного строения Сибирского кратона (Poseн, 2003; Глебовицкий и др., 2008; Rosen et al., 1994; Gladkochub et al., 2006; Smelov, Timofeev, 2007; Pisarevsky et al., 2008; Donskaya, 2020; Priyatkina et al., 2020) (рис. 1). В то же время, всеми исследователями признается точка зрения об окончательном формировании Сибирского кратона в качестве единой структуры в раннем протерозое. Согласно схем О.М. Розена (2003), Д.П. Гладкочуба и др. (Gladkochub et al., 2006), С.А. Писаревского и др. (Pisarevsky et al., 2008) и Т.В. Донской (Donskaya, 2020) наиболее крупными структурами, слагающими Сибирский кратон, являются Тунгусский, Анабарский, Оленекский, Алданский и Становой супертеррейны или мегаблоки (рис. 2). Эти супертеррейны или мегаблоки, в свою очередь, также являются композитными и образовывались в реузльтате коллизии более мелких тектонических блоков.

Рис. 1. Схемы тектонического строения Сибирского кратона (Розен, 2003; Gladkochub et al., 2006; Donskaya, 2020; Priyatkina et al., 2020; Глебовицкий и др., 2008; Smelov, Timofeev, 2007).

Рис. 2. Тектонические структуры Сибирского кратона (Донская, 2019; Donskaya, 2020): 1 – архейские террейны, 2 – раннепротерозойские террейны, 3 – архейские шовные зоны, 4-6 – раннепротерозойские орогенные пояса и коллизионные зоны: 4 – 2.00-1.95 млрд лет, 5 – 1.95-1.90 млрд лет, 6 – 1.90-1.87 млрд лет, 7 – выходы фундамента, 8 – обнаженные сегменты Акитканского орогенного пояса: Т – Тонодский, Ч – Чуйский, С – Сарминский, Г – Голоустенский.

Одна из наиболее современных схем внутреннего строения Сибирского кратона была предложена Т.В. Донской (Донская, 2019; Donskaya, 2020) на основе обобщения тектонических схем О.М. Розена (2003), Гладкочуба и др. (Gladkochub et al., 2006) и С.А. Писаревского и др. (Pisarevsky et al., 2008). Согласно данной схемы Сибирский кратон представляет собой композитную структуру, состоящую из архейских и раннепротерозойсикх супертеррейнов, разделенных раннепротерозойскими орогенными поясами и шовными зонами (рис. 2). К архейским супертеррейнам относятся Тунгусский супертеррейн, включающий в себя Тунгусский, Ангаро-Ленский и Тасеевский более мелкие террейны;

Анабарский супертеррейн, объединяющий породы Маганского, Далдынского и Мархинского террейнов; западная часть Алданского супертеррейна, состаящая из Олекминского (Чара-Олекминского) и Западно-Алданского террейнов; а также Становой супертеррейн. Среди раннепротерозойских террейнов выделяются Биректинский террейн, который входит в состав Оленекского супертеррейна, и восточная часть Алданского супертеррейна, состоящего из Восточно-Алданского и Батомгского террейнов.

Объединение крупных архейских и раннепротерозойских супертеррейнов привело к формированию протяженных коллизионных зон и мощных орогенных поясов. Образование коллизионных зон и орогенных поясов происходило не одновременно, а течение несколько этапов, отражающих последовтельную сборку Сибирского кратона как единой структуры. В частности, на раннем временном интервале 2.00-1.95 млрд лет были сформированы Хапчанский орогенный пояс, соединяющий Биректинский террейн Оленекского супертррейна и Анабарский супертеррейн, Акитканский складчатый пояс, образованный при сочленении Анабарского и Алданского супертеррейнов, а также, по-видимому, Ульканская шовная зона, соединяющая Восточно-Алданский и Батомгский террейны. На этапе 1.95-1.90 млрд лет были образованы Тиркандская шовная зона, соединяющая террейны западной и восточной частей Алданского супертеррейна, а также Пристановой орогенный пояс, сформировавшийся при объединении Алданского и Станового супертеррейнов. Позднее, на временном интервале 1.90-1.87 млрд лет были образованы Байкало-Таймырский орогенный пояс или шовная зона, соединяющая Тунгусский и Анабарский супертеррейны, а также Ангарский орогенный пояс вдоль западной окраины кратона. Таким образом, начиная с рубежа 1.87 млрд лет структуру Сибирского кратона можно считать полностью сформированной (Донская, 2019; Donskaya, 2020). Индикаторами финальной стадии становления структуры Сибирского кратона являются породы Южно-Сибирского постколлизионного магматического пояса с возрастом 1.88–1.84 млрд лет, широко распространенные вдоль всей южной части Сибирского кратона,

формирование которых имело место в обстановке постколлизионного растяжения (Диденко и др., 2003; Ларин и др., 2003; Donskaya, Gladkochub, 2021).

В настоящее время большая часть площади Сибирской платформы перекрыта породами венд-фанерозойского осадочного чехла. Выходы фундамента Сибирской платформы отмечаются только в пределах Анабарского и Алдано-Станового щитов, а также вдоль южной окраины Сибирской платформы в нескольких выступах (с востока на запад): Тонодском, Байкальском, Шарыжалгайском, Бирюсинском и Ангаро-Канском.

1.2. Геологическое строение Байкальского выступа фундамента Сибирской платформы

Байкальский выступ фундамента Сибирской платформы протягивается от пос. Большое Голоустное на юге до Патомского нагорья на севере (рис. 3). Географически породы Байкальского выступа выходят на поверхность в пределах Приморского и Байкальского хребтов, а также Чуйского поднятия.

Рис. 2. Схема геологического строения Байкальского выступа фундамента Сибирской платформы (Донская, 2019).

1 – Центрально-Азиатский складчатый пояс; 2 – венд-фанерозойские образования чехла Сибирской платформы; 3 – неопротерозойские осадочные породы; 4-6 – раннепротерозойские метаморфические породы Байкальского выступа: 4 – Голоустенский сегмент, 5 – Сарминский

сегмент; 6 – Чуйский сегмент; 7 – раннепротерозойские метаморфические породы Тонодского выступа; 8-9 – раннепротерозойские породы Южно-Сибирского постколлизионного магматического пояса: 8 – гранитоиды; 9 – вулканиты и терригенные породы акитканской серии; 10 – раннепротерозойские коллизионные гранитоиды; 11 – раннепротерозойские надсубдукционные гранитоиды; 12 – архейские гранитоиды.

Согласно тектонических схем О.М. Розена (Розен, 2003), Д.П. Гладкочуба и др. (Gladkochub et al., 2006), С.А. Писаревского и др. (Pisarevsky et al., 2008) и Т.В. Донской (Donskaya, 2020) породы Байкальского выступа принадлежат раннепротерозойскому Акитканскому орогенному поясу. В строении Байкальского выступа выделяются три блока (сегмента) (Донская, 2019) (с юга на север): Голоустенский, Сарминский и Чуйский (рис. 2).

Голоустенский сегмент располагается в южной части Байкальского выступа фундамента Сибирской платформы. Среди пород Голоустенского сегмента широко распространены мигматизированные гнейсы И гранито-гнейсы, которые объединены в составе таланчанской толщи (Аносов, 1967). Степень метаморфизма этих пород достигает высокотемпературной амфиболитовой фации. Среди мигматизированных гнейсов и гранито-гнейсов отмечаются разные по размеру кристаллических амфиболитов, ксенолиты двупироксеновых сланцев, плагиогнейсов, ультрабазитов и гранитоидов (Гладкочуб и др., 2013; Донская и др., 2016). Наиболее древними породами в пределах Голоустенского сегмента в настоящее время являются биотитовые граниты Хомутского массива с возрастом 2153 ± 11 млн лет (Донская и др., 2016). Целая группа пород в Голоустенском сегменте рассматривается как фрагменты раннепротерозойских активных континентальных окраин или зрелых островных дуг. В частности, З.И. Петрова (Петрова, 2001) показала, что двупироксен-биотитовые кристаллические сланцы и амфиболиты Голоустенского сегмента по геохимическим характеристикам отвечают основным вулканитам, которые были сформированы в геодинамической обстановке активной континентальной окраины или зрелой островной дуги. Т.В. Донская с соавторами (Донская и др., 2016) показали, что в этой же обстановке

могли образоваться биотит-амфиболовые граниты *I*-типа Еловского массива, U-Pb возраст по циркону которых составляет 2018 ± 28 млн лет (Poller et al., 2005). Формирование собственно мигматит-гнейсовой толщи было опредлено по возрасту циркона из гранитогнейса Голоустенского сегмента – 1985 ± 15 млн лет (Донская и др., 2016). Все вышеперечленные породы Голоустенского сегмента прорываются гранитоидами *A*-типа приморского комплекса с возрастом 1.86 млрд лет (Донская и др., 2003, 2005; Савельева, Базарова, 2012), которые входят в структуру Южно-Сибирского постколлизионного магматического пояса.

Сарминский сегмент слагает центральную часть Байкальского выступа и представлен, главным образом, метаморфизованными вулканогенно-осадочными породами сарминской серии, среди которых преобладают метаосадочные породы. Породы сарминской серии метаморфизованы в разной степени, которая варьируется от зеленосланцевой до амфиболитовой фаций умеренных давлений (Галимова и др., 2009). Метаморфизованные вулканогенно-осадочные породы интрудированы раннепротерозойскими гранитоидами кочериковского комплекса и лейкогранитами Трехголового массива с возрастом 1.91 млрд лет (Бибикова и др., 1987; Базарова, 2011), а также гранитоидами приморского и ирельского комплексов возрастом 1.88–1.86 млрд лет, которые входят в Южно-Сибирский с постколлизионный магматический пояс (Донская и др., 2003, 2005; Poller et al., 2005; Donskaya, Gladkochub, 2021). С несогласием породы сарминской серии перекрываются осадочно-вулканогенными образованиями акитканской серии, которые входят в состав Северо-Байкальского вулканоплутонического пояса (1.88-1.85 млрд лет) (Неймарк и др., 1991; Ларин и др., 2003; Донская и др., 2007, 2008; Poller et al., 2005).

В северной части Сарминского сегмента Байкальского выступа обнаруживаются выходы гранитоидов, близких по составу породам тоналиттрондьемит-гранодиоритовой (ТТГ) серии, возраст которых оценивается в 2884 ± 12 млрд лет (Donskaya et al., 2009).

19

Чуйский сегмент сложен преимущественно амфибол-биотитовыми, биотитамфиболовыми и биотитовыми гнейсами, амфиболитами, объединенными в чуйскую серию, которые до метаморфических преобразований представляли собой вулканогенно-граувакковую толщу (Макрыгина и др., 1981; Петрова и др., 1997). Метаморфизм пород, выделяемых В составе чуйской серии, достигает высокотемпературных ступеней амфиболитовой и гранулитовой фаций. По своему химическому составу породы чуйской серии близки современным островодужным образованиям активных континентальных окраин (Макрыгина и др., 1981; Кущ, Макрыгина, 2014). Наиболее древними породами в Чуйском сегменте в настоящее время являются лейкограниты с возрастом 2066 ± 10 млн лет (Неймарк и др., 1998). Значительную площадь в Чуйском сегменте занимают массивы гранитоидов чуйского и кутимского комплексов с возрастом 2020 ± 12 млн лет и 2019 ± 16 млн лет, соответственно (Неймарк и др., 1998; Донская и др., 2013). По своему химическому составу гранитоиды чуйского комплекса близки породам тоналиттрондьемит-гранодиоритовой серии и гранитам І-типа (Ларин и др., 2006; Донская и др., 2013), а граниты кутимского комплекса обнаруживают геохимические характеристики как гранитов I- так и А-типа (Донская и др., 2013). Гранитоиды обеих комплексов имеют положительные значения $\varepsilon_{Nd}(t)$, что свидетельствует об раннепротерозойской ИХ формировании за счет плавления ювенильной континентальной коры (Донская и др., 2013). Образование гранитоидов, повидимому, происходило в надсубдукционной геодинамической обстановке, а точнее в пределах аккреционного орогена, формирующегося над погружающейся зоной субдукции (Донская и др., 2013). Гранитоиды чуйского и кутимского комплексов совместно с породами чуйской серии в дальнейшем были вовлечены в процессы деформации, связанные с более поздними коллизионными событиями.

Также как и породы Сарминского сегмента, образования Чуйского сегмента прорываются постколлизионными гранитоидами ирельского комплекса и с несогласием перекрываются осадочно-вулканогенными образованиями акитканской серии Северо-Байкальского вулканоплутонического пояса с возрастом 1.88–1.85 млрд лет (Неймарк и др., 1991; Ларин и др., 2003; Донская и др., 2007, 2008; Poller et al., 2005), а чайская (верхняя) свита акитканской серии перекрывается раннепротерозойскими осадочными образованиями окуньской свиты (Срывцев, 1986), которые интрудированы дайками долеритов чайского комплекса с возрастом 1.75 млрд лет (Gladkochub et al., 2010b).

1.3. Геологическое строение Сарминского сегмента Байкальского выступа

Сарминская сегмент, выделяемый в центральной части Байкальского выступа, сложен архейскими и раннепротерозойскими магматическими и метаморфическими породами (рис. 4).

Как уже упоминалось выше, наиболее древними породами Сарминского сегмента являются гранитоиды ТТГ серии с возрастом 2884 ± 12 млн лет (Donskaya et al., 2009), которые распространены только в северной части этого сегмента. Наибольшую площадь Сарминского сегмента занимают метаморфизованные терригенные породы сарминской серии, которая на основании последних данных геологического картирования масштаба 1:200000 подразделяется на харгитуйскую и иликтинскую свиты (рис. 4) (Галимова и др., 2009). По данным более ранних исследований в составе сарминской серии выделялась также и анайская свита, а последовательность сарминской серии принималась как нижележашая иликтинская и вышележащая анайская свиты (Федоровский, 1989). По данным Т.Ф. Галимовой с соавторами (Галимова и др., 2009) анайская свита относится к возрастному срезу рифея.

Рис. 4. Геологическая карта Сарминского сегмента Байкальского выступа фундамента Сибирской платформы (составлена по (Галимова и др., 2009)).

1 – 3 – терригенно-карбонатные отложения байкальской серии: 1 – качергатская свита, 2 – улунтуйская свита, 3 – голоустенская свита, 5 – нуганская свита, 5 – протерозойские дайки долеритов, 6 – анайская свита, 7 – акитканская серия, 8 – гранитоиды приморского комплекса, 9 – гранитоиды кочериковского комплекса, 10 – 11 – сарминская серия: 10 –иликтинская свита, 11 – харгитуйская свита; 12 – коллизионный шов, отделяющий фундамент Сибирской платформы от ЦАСП.

Согласно (Галимова и др., 2009) харгитуйская свита выделяется в основании сарминской серии и залегает в узком тектоническом блоке северо-восточного простирания, ориентированном вдоль зоны раннепалеозойского коллизионного шва, отделяющего породы фундамента Сибирской платформы от раннепалеозойского Ольхонского террейна Центрально-Азиатского складчатого пояса (ЦАСП) (рис. 3). Разрез харгитуйской свиты включает в себя три подсвиты. Нижняя подсвита общей мощностью от 300-500 до 800 м сложена биотитовыми, роговообманково-биотитовыми, двуслюдяными гнейсами и метариолитами, чередующимися между собой. Средняя подсвита мощностью 200-1370 м представлена сланцами, слюдистыми кварцитами и метариолитами. Верхняя подсвита сложена кварцитами с прослоями кварцево-слюдистых сланцев общей мощностью от 400-600 м до 700-795 м. Породы свиты метаморфизованы в условиях от зеленосланцевой до амфиболитовой фаций (Галимова и др., 2009). В северной части распространения харгитуйской свиты на основании ⁴⁰Ar/³⁹Ar датирования мусковита из слюдистого сланца для ее пород был установлен возраст метаморфизма, который оценивается в 1948 ± 8 млн лет (Савельева и др., 2019). претерпели динамометаморфические Породы харгитуйской свиты также преобразования, связанные с раннепалеозойской коллизией между Сибирским кратоном и ЦАСП.

Верхняя иликтинская свита сарминской серии протягивается от верховьев р. Анга на юге до верховьев р. Бол. Анай на севере. Согласно данным геологического картирования (Галимова и др., 2009), свита имеет двучленное строение. Нижняя часть свиты представлена преимущественно сланцами различного состава и метаэффузивами среднего и кислого составов при подчиненном количестве карбонатных и терригенных пород (Галимова и др., 2009). Верхняя часть свиты сложена, главным образом, разнообразными песчаниками с редкими прослоями сланцев. Среди песчаников иногда отмечаются выходы эффузивов среднего и кислого составов (Галимова и др., 2009). Общая мощность свиты оценивается в 3– 4 км.

Анайская свита в разрезе Западного Прибайкалье не имеет однозначно доказанной геологической позиции. Стратотип анайской свиты выделяется в северной части Сарминского сегмента в районе Анайских гольцов, где по данным (Александров и др., 1989) свита имеет трехчленное строение. Нижняя подсвита сложена конгломератами, гравелитами, полимиктовыми песчаниками и кварцитами. Средняя подсвита отличается присутствием в разрезе хлоритоид-

23

серицитовых сланцев. Верхняя подсвита имеет существенно кварцитовый состав. Т.Ф. Галимова с соавторами (Галимова и др., 2009) указывают, что анайская свита распространена в центральной части Приморского хребта (бассейн р. Сарма), где она образует крупную Приморскую синклиналь, а также в узком тектоническом блоке на юго-восточном склоне хребта, в районе мыса Арал. В разрезе, составленном в бассейнах рр. Сармы и Курмы, свита имеет двучленное строение (Галимова и др., 2009). Нижняя подсвита характеризуется сланцево-кварцитопесчаниковым составом и сложена хлоритовыми и хлоритоидными сланцами, кварцевыми песчаниками, кварцитами, гравелистыми песчаниками (мощность 500 м). Верхняя подсвита имеет существенно сланцевый состав и сложена хлоритоидными сланцами с прослоями (50 м) кварцевых песчаников (мощность 255 м).

Считается, что породы сарминской серии интрудированы гранитоидами кочериковского комплекса и лейкогранитами Трехголового массива с возрастом 1.91 млрд лет (Бибикова и др., 1987; Базарова, 2011), а также гранитоидами приморского и ирельского комплексов с возрастом 1.86–1.88 млрд лет (Донская и др., 2003; Poller et al., 2005), которые входят в состав Южно-Сибирского постколлизионного магматического пояса (Donskaya, Gladkochub, 2021). На основании прорывания пород сарминской серии вышеперечисленными магматическими образованиями, считается, что породы сарминской серии имеют раннепротерозойский возраст и являются наиболее древними терригенными образованиями в пределах Сарминского сегмента. Раннепротерозойский возраст сарминской серии также подтверждается установленным В.Б. Савельевой с соавторами (Савельева и др., 2019) возрастом метаморфизма на отметке 1.95 млрд лет для пород харгитуйской свиты. Однако, в результатах геолого-съемочных работ и специальных стратиграфических исследований также отмечается, что породы харгитуйской свиты имеют преимущественно тектонические контакты как с гранитоидами кочериковского и приморского комплексов, так и с вышележащими метатерригенными породами, что связано со сложным тектоническим строением исследуемой территории (Галимова и др., 2009).

Породы сарминской серии с угловым и стратиграфическим несогласием перекрываются раннепротерозойскими осадочно-вулканогенными породами акитканской серии, которые совместно с гранитоидами приморского и ирельского состав Южно-Сибирского комплексов входят В постколлизионного магматического пояса (1.84–1.88 млрд лет). На некоторых участках отмечается прорывание пород сарминской серии дайками диоритов с возрастом 1.86 млрд лет (Донская и др., 2023, 2024) и габбродолеритов с возрастом 1.75 млрд лет (Gladkochub et al., 2019а). Отмечено также прорывание биотитовых, биотитамфиболовых гнейсов и кварцитов харгитуйской свиты, развитых севернее пос. Онгурен, дайками и жилами карбонатитов возрастом около 1.00 млрд лет (Савельева и др., 2014, 2016).

Все вышеперечисленные породы интрудированы неопротерозойскими дайками долеритов и габбродолеритов с возрастом 0.72 млрд лет (Ernst et al., 2023), которые рассматриваются как аналоги нерсинского комплекса, выделяемого в Присаянской зоне южной части Сибирской платформы. Породы сарминской серии и Южно-Сибирского постколлизионного магматического пояса также, как дайки долеритов перекрываются вендскими теригенными породами нуганской свиты и терригенно-карбонатными породами байкальской серии (Гладкочуб и др., 2013; Masykaбзов и др., 2018; Gladkochub et al., 2019).

Глава 2. Аналитические методы исследования терригенных пород

Петрографическое описание шлифов терригенных пород осуществлялось на оптическом поляризационном микроскопе «OLYMPUS BX41», оснащенном цифровой фотокамерой, в ИЗК СО РАН.

Определение содержаний петрогенных оксидов для большинства образцов выполнено методом силикатного анализа в ЦКП «Геодинамика и геохронология» ИЗК СО РАН (г. Иркутск) с применением атомно-абсорбционного И спектрофотометрического методов анализа. а также методом рентгенофлуоресцентного анализа в ИГМ СО РАН (г. Новосибирск). Определение концентраций Co, Ni, Sc, V, Cr выполнено в ЦКП «Геодинамика и геохронология» ИЗК CO PAH методами количественного спектрального И рентгенофлуоресцентного анализов. Определение содержаний остальных редких и редкоземельных элементов выполнено методом масс-спектрометрии с индуктивносвязанной плазмой (ICP-MS), которые проводились в Лимнологическом институте СО РАН, ОПЦКП «Ультрамикроанализ», на квадрупольном масс-спектрометре Agilent 7500ce (Agilent Technologies Inc., США) и в ЦКП «Геодинамика и геохронология» ИЗК СО РАН на квадрупольном масс-спектрометре Agilent 7900 (Agilent Technologies Inc., США). Концентрации элементов в образцах рассчитаны международных стандартов ВНVО-2, ВСR-2, G-2, GSP-2. относительно Химическое разложение проб для ICP-MS анализа проведено в ЦКП «Геодинамика и геохронология» ИЗК СО РАН методом сплавления с метаборатом лития по методике (Panteeva et al., 2003), что позволило достичь полного растворения всех минералов. Ошибка определений содержаний редких и редкоземельных элементов методом ICP-MS составляла ≤5%.

Содержания основных петрогенных оксидов, редких и редкоземельных элементов приведены в приложениях 1–3.

Изотопные Sm-Nd исследования проводились в ЦКП «Геодинамика и геохронология» ИЗК СО РАН по следующей схеме. Навеска 100 мг истертого образца с добавлением изотопного трассера ¹⁴⁹Sm-¹⁵⁰Nd разлагалась в смеси кислот

HNO₃-HF-HClO₄ с использованием микроволновой печи. Выделение суммы редких земель проводили на колонках, заполненных 2 мл катионообменной смолой AG50W-х8. Последующее разделение Sm и Nd проводилось на колонках, заполненных смолой Ln Spec по методике (Pin, Zalduegui, 1997). Изотопные отношения Nd и Sm измерены на многоколлекторном масс-спектрометре Finnigan MAT-262. Измеренные отношения ¹⁴³Nd/¹⁴⁴Nd нормализованы к отношению ¹⁴⁶Nd/¹⁴⁴Nd = 0.7219. Точность определения концентраций Sm и Nd составила 0.5%, изотопных отношений ¹⁴⁷Sm/¹⁴⁴Nd – 0.5%, ¹⁴³Nd/¹⁴⁴Nd – 0.005% (2σ). Средневзвешенное значение ¹⁴³Nd/¹⁴⁴Nd для стандарта JNdi-1 за период измерений представленных в статье данных составило 0.512082 ± 0.000011 (2σ, n = 11). При расчете величин εNd_(t) и модельных возрастов tNd(DM) использованы современные значения DM по (Goldstein, Jacobsen, Wasserburg, 1984) и деплетированной мантии DM по (Goldstein, Jacobsen, 1988). В расчетах использовалась константа распада ¹⁴⁷Sm из работы (Villa et al., 2020).

Данные Sm-Nd исследований провенены в приложении 4.

Для проведения геохронологических исследований из пород харгитуйской, иликтинской и анайской свит выделялись зерна детритового циркона посредствам сепарационного столика и тяжелых жидкостей. Цирконы погружали в шайбу стандартного размера, которую наполняли эпоксидной смолой и после застывания смолы подвергали полировке. При анализе проводили измерение изотопных отношений в зернах циркона без какого-либо их предварительного отбора по размеру или морфологии. Для выбора точек исследования использовались катодолюминесцентные изображения, отражающие внутреннюю структуру и зональность зерен циркона. Катодолюминесцентные изображения зерен циркона были сделаны в ЦКП «Изотопно-геохимических исследований» Института геохимии им. А.П. Виноградова СО РАН на сканирующем электронном микроскопе Tescan MIRA-3.

U-Pb геохронологические исследования детритовых цирконов из пород харгитуйской и иликтинской свит выполнены в ЦКП «Геодинамика и геохронология» Института земной коры СО РАН методом LA-ICP-MS на

27

квадрупольном масс-спектрометре Agilent 7900 с эксимерным лазером Analyte Excite и ячейкой двойного объема HelEx II. Лазерная абляция проводилась пучком лазера диаметром 25 и 35 мкм. Цикл измерения состоял из 20 с – фон, 40 с – накопление сигнала, 30 с – продувка перед следующим циклом. Для калибровки использовался стандартный циркон 91500, имеющий возраст 1065.4±0.6 млн лет (Wiedenbeck et al., 1995). Цирконовые стандарты Plešovice (337.13±0.37 млн лет (Sláma et al., 2008)) и R33 (419.96±0.15 млн лет (Black et al., 2004)) использовались для контроля качества данных. В ходе исследований для цирконовых стандартов были получены следующие значения: Plešovice – 338 ± 1 млн лет, R33 – 422 ± 3 млн лет. Обработка выполненных измерений проводилась в программах Iolite 4.x (Paton et al., 2011), Dezirteer (Powerman et al., 2021) и ISOPLOT (Ludwig, 2012).

Изучение зерен детритового циркона из породы анайской свиты проводилось в ЦКП «Геоспектр» Геологического института им. Н.Л. Добрецова СО РАН, г. Улан-Удэ. U-Pb изотопный анализ циркона выполнен методом лазерной абляции на масс-спектрометре высокого разрешения Element XR (Thermo Fisher Scientific), соединенным с приставкой для лазерного прибора UP-213 с длиной волны излучения 213 нм (New Wave Research) по методике, опубликованной в (Khubanov et al., 2016; Buyantuev et al., 2017). Диаметр лазерного пучка при абляции составлял 30 мкм. Калибровка проводилась с использованием стандартного циркона 91500, имеющего возраст 1065.4 \pm 0.6 млн лет (Wiedenbeck et al., 2004). Цирконовые стандарты Plešovice (337.1 \pm 0.4 млн лет (Sláma et al., 2008)) и GJ-1 (608.5 \pm 0.4 млн лет (Jackson et al., 2004)) использовались для контроля качества данных. Обработка выполненных измерений проводилась в программах GLITTER (Griffin et al., 2008) и ISOPLOT (Ludwig, 2012).

В интерпретации полученных геохронологических данных учитывались только оценки возраста, дискордантность которых не превышает 10 %. Гистограммы и кривые относительной вероятности построены по ²⁰⁷Pb/²⁰⁶Pbзначениям возраста с ошибкой 1σ.

Результаты U-Pb LA–ICP–MS анализа зерен детритового циркона приведены в приложении 5.

28

Глава 3. Характеристика раннепротерозойских терригенных пород Байкальского выступа

3.1. История изученности терригенных пород, относимых к сарминской серии

Положение протерозойских метаморфических толщ В структурах фундамента докембрийских платформ зачастую не имеет однозначной и надежно подтвержденной трактовки. Связано ЭТО как отсутствием С надежных геохронологических данных по этим породам, так и с их вовлеченностью в последующие этапы тектоно-метаморфической переработки. В центральной части Сибирской Байкальского выступа фундамента платформы залегают раннепротерозойские породы сарминской серии, которые простираются (с юга на север) от верховьев реки Анга до верховьев реки Бол. Анай. В публикациях разных исследователей (Мац и др., 1961; Калинина, Кульчицкий, 1964; Федоровский, 1985; Галимова и др., 2009) в составе сарминской серии выделялись разные свиты: харгитуйская и иликтинская (Калинина, Кульчицкий, 1964; Галимова и др., 2009), иликтинская и анайская (Федоровский, 1985) (рис. 5), а также харгитуйская, иликтинская и голечная свиты (Мац и др., 1961).

Рис. 5. Схема стратиграфической последовательности раннего протерозоя Сарминского сегмента по данным разных исследователей (Салоп, 1964; Федоровский. 1989; Галимова и др., 2009).

В 1953 году С.В. Обручев проводил геологические исследования на территории севернее от пос. Онгурен, где на современных картах распространены харгитуйская и иликтинская свиты. По результатам проведенных работ С.В. Обручев разделил исследованные раннепротерозойские образования на 4 свиты: онгуренская (сложенная различными сланцами с подчиненным количеством кварцитов), илгинская (сложенная чередованием кварцитов, филлитовидных и эпидот-роговообманковых сланцев). шартлы (сложенная фиолетовыми И зеленовато-серыми карбонатными серицит-хлоритовыми сланцами в основании и метаморфизованными аркозовыми песчаниками в верхней части) и солонцовая (состоящая из серых и зеленоватых тонкополосчатых эпидот-роговообманковых и серицит-хлоритовых сланцев с прослоями кварцитов, которые сменяются рассланцованными кварцитами с прослоями хлоритовых и эпидот-хлоритовых сланцев). Порядок свит намечался С.В. Обручевым исходя из предположения об убывании степени метаморфизма пород к верхней части разреза. Однако, по мнению В.Д. Маца и А. С. Кульчицкого (Мац и др., 1961; Кульчицкий, 1957) свиты

илгинская и шартлы данной схемы включают в себя более молодые отложения среднего протерозоя, залегающие резко несогласно на метаморфическом комплексе раннего протерозоя.

Позднее в 1957 году по результатам геолого-съемочных работ А.С. Кульчицкий непосредственно выделил сарминскую серию, в составе которой описал нижнюю харгитуйскую, сложенную сланцами, кварцитами и измененными эффузивами среднего и кислого составов (мощность свиты 5800 м), и верхнюю иликтинскую, состоящую из различных метаморфизованных эффузивов основного и среднего составов с прослоями сланцев, туфов и песчаников (мощность свиты 3000 м) (Кульчицкий, 1957). С.В. Обручев и А.С. Кульчицкий отмечали сложное тектоническое строение территории распространения пород, относимых к сарминской серии, что осложняет установление стратиграфической последовательности таких мощных метаморфизованных толщ.

В 60-х годах прошлого века на исследуемой территории проходили геологосъемочные работы масштаба 1:200 000 (Мац и др., 1961; Калинина, Кульчицкий, 1964). В объяснительной записке В.Д. Мац с соавторами (Мац и др., 1961) в составе сарминской серии помимо харгитуйской и иликтинской свит описали также голечную свиту, которая завершает разрез сарминской серии. По данным их исследований голечная свита имеет крайне узкое распространение и обособляется лишь на двух участках небольшой площади на правобережье р. Мал. Иликты. Разрез голечной свиты описан следующим образом: в основании свиты выделяется горизонт валунно-галечных конгломератов, выше следует пачка серицитхлоритовых сланцев, а завершается разрез свиты чередующимися хлоритовыми, железисто-хлоритовыми сланцами и железистыми кварцитами. Валуны и гальки в основании свиты представлены преимущественно лейкократовыми гранитами. Видимая мощность свиты оценивается в 350 м.

В 1985 году вышла монография В.С. Федоровского «Ранний протерозой Байкальской горной области» (Федоровский, 1985), в котором он на основании собственных полевых наблюдений в составе сарминской серии предлагает выделять две свиты: нижнюю иликтинскую и верхнюю анайскую. Отсутствие

харгитуйской свиты В.С. Федоровский обосновывает тем, что на основании изучения разреза в долине р. Элигей породы, относимые другими авторами к нижней подсвите харгитуйской свиты, идентичны породам иликтинской свиты, отличаясь лишь более высокой степенью метаморфизма, таким образом указывая на то, что породы харгитуйской свиты на всей площади её распространения на самом деле стоит рассматривать в составе иликтинской свиты. Принадлежность анайской свиты к раннепротерозойской сарминской серии В.С. Федоровский обосновывает схожестью состава верхней части иликтинской свиты и нижней части анайской свиты, единством их метаморфизма и присутствием в разрезах обеих толщ идентичных послойных тел кислых порфиров, метадиабазов и субсогласных метагаббро-диабазов, a тел также присутствием пластов метаконгломератов с одинаковыми по составу гальками. Также в монографии (Федоровский, 1985) указывается, что на границе иликтинской и анайской свит обнаруживается маломощный горизонт мраморов (1-2 м), которому В.С. Федоровский отдает переходное литологическое значение между свитами. Эти критерии легли в основу вывода В.С. Федоровского о том, что анайская и иликтинская свиты являются компонентами единого разреза сарминской серии. Однако, согласно другим точкам зрения и опубликованным стратиграфическим схемам (Мац, 1983; Устинов, Рыбаков, 1983; Александров и др., 1989), анайская свита со стратиграфическим несогласием залегает на раннепротерозойских породах сарминской и акитканской серий и перекрывается позднерифейскими отложениями голоустенской свиты байкальской серии, по другой гипотезе (Головенок, 1977) – нижние части разреза анайской свиты соответствуют верхним горизонтам акитканской серии, а именно чайской свите. Существует еще одна точка зрения, согласно которой анайская свита и акитканская серия являются фациальными аналогами (Салоп и др., 1974).

В 2009 году по результатам геолого-съемочных работ масштаба 1:1 000 000 листа N-48 (Иркутск) была опубликована объяснительная записка (Галимова и др., 2009), в которой в составе сарминской серии выделятся нижняя харгитуйская и верхняя иликтинская свиты. Анайская свита рассматривается на возрастном срезе

рифея, перекрывая отложения сарминской и акитканской серий. Однако, на геологической карте (лист N-48) в стратотипической для анайской свиты местности – Анайских гольцах – изображены породы чайской свиты акитканской серии, что обосновано схожестью литологического состава этих свит и одинаковым стратиграфическим положением в разрезе рифея. Непосредственно породы анайской свиты картируются в пределах Приморской синклинали в центральной части Приморского хребта, а также в небольшом тектоническом блоке на юговосточном склоне Приморского хребта (Галимова и др., 2009).

Изложенная выше информация хорошо иллюстрирует нерешенные вопросы и противоречия в мнениях исследователей, занимавшихся изучением раннепротерозойских отложений Байкальского выступа фундамента Сибирской платформы.

3.2. Харгитуйская свита

Породы, относимые к харгитуйской свите сарминской серии, были изучены на шести участках (рис. 6).

Рис. 6. Геологическая карта Западного Прибайкалья (Галимова и др., 2009) и расположение участков детальных работ в пределах выходов пород харгитуйской свиты.

Участок (1) расположен к северу от пос. Онгурен, в правом борту р. Элигей (рис. 5). Породы на этом участке относятся к нижней подсвите харгитуйской свиты и представлены преимущественно лейкократовыми гнейсами, содержащими небольшое количество биотита и амфибола. В меньших количествах присутствуют здесь амфиболовые гнейсы. Гнейсы прорваны дайками долеритов, предположительно, неопротерозойского возраста.

Участок (2) располагается приблизительно в 2.5 км южнее участка (1), также севернее пос. Онгурен, в правом борту р. Элигей (рис. 5). Породы на этом участке были изучены в трех обнажениях и представлены, главным образом, кварцитами, которые чередуются со слюдисто-кварцевыми и плагиоклаз-слюдисто-кварцевыми

сланцами. В.Б. Савельевой с соавторами (Савельева и др., 2019) для слюдистого сланца, отобранного ранее в пределах этого участка, была получена оценка возраста 1948±8 млн лет в результате ⁴⁰Ar/³⁹Ar датирования мусковита. Метаморфические породы на этом участке прорываются раннепротерозойскими дайками диоритов с возрастом 1862±7 млн лет (Донская и др., 2024), а также предположительно неопротерозойскими дайками долеритов.

Участок (3) находится приблизительно в 1.5 км южнее участка (2), в районе мыса Ядор оз. Байкал, также к северу от пос. Онгурен (рис. 6). Здесь также, как и на участке (2), выходят на поверхность породы, среди которых представлены кварциты, чередующиеся со слюдисто-кварцевыми и плагиоклаз-слюдисто-кварцевыми сланцами. Породы прорываются дайкой гранит-аплитов, палеопротерозойскими и неопротерозойскими дайками долеритов (Донская и др., 2023), а также дайками карбонатитов с возрастом около 1.00 млрд лет (Савельева и др., 2016).

Участок (4) расположен на побережье оз. Байкал на юго-восточной окраине пос. Онгурен (рис. 6). На этом участке отмечаются главным образом слюдистокварцевые сланцы, которые чередуются с представленными в подчиненном количестве кальцит-кварц-хлоритовыми сланцами.

Участок (5) расположен южнее пос. Онгурен на берегу залива Каргалтей оз. Байкал (рис. 6). Породы на этом участке представлены, в основном, слюдистокварцевыми сланцами, также чередующиеся с эпидот-хлоритовыми сланцами.

Участок (6) расположен далеко от первых четырех участков, приблизительно в 115 км к юго-западу (рис. 6). Здесь в долине р. Анга, в 3 км от пос. Еланцы были изучены три обнажения на правом и левом бортах реки. Во всех обнажениях наблюдалось чередование кварцитов, слюдисто-кварцевых и амфиболовых сланцев, имеющих незначительную мощность.

На каждом участке были проведенные комплексные исследования пород харгитуйской свиты, включая отбор проб на геохронологические исследования.

35

3.2.1. Результаты исследования возраста детритовых цирконов

На участке (1) был отобран образец 2109 лейкократового гнейса. Из этого образца было выделено 116 зерен детритового циркона, для 75 из которых получены значения возраста с дискордантностью <10%. Большая часть полученных значений (30 зерен) формируют основной пик на отметке 2985 млн лет, менее значимые пики формируются на отметках 2860, 2936 и 3091 млн лет (рис. 7а). Также выделяется группа более молодых зерен циркона (11 зерен), возрасты которых соответствуют интервалу 2695–2805 млн лет.

Образец 2115 слюдисто-кварцевого сланца был отобран на участке (2), расположенном севернее пос. Онгурен, в правом борту р. Элигей (5). В этом образце было проанализировано 147 зерен детритового циркона, для 137 зерен были получены значения возраста с дискордантностью <10%. Основной возрастной пик формируется на отметке 2331 млн лет (95 зерен), также отмечаются более мелкие пики на отметках 2869 и 2973 млн лет (рис. 76). Более молодые значимые возрастные группы зерен циркона соответствуют отметкам 2150 млн лет (5 зерен) и 2220 млн лет (10 зерен).

Рис. 7. Гистограммы и кривые относительной вероятности возраста детритовых цирконов из пород харгитуйской свиты.

Образец 2147 слюдисто-кварцевого сланца был отобран на участке (3) – мыс Ядор, оз. Байкал (рис. 7в). В образце 2147 было проанализировано 111 зерен детритового циркона, для 92 из которых были получены значения возраста с дискордантностью <10%. Наиболее значимый возрастной пик (60 зерен) формируется на отметке 2461 млн лет, менее значимые пики отмечены на отметке 2320 млн лет, 2570 и 2903 млн лет (рис. 7в).

Образец 2155 слюдисто-кварцевого сланца был отобран на участке (4), расположенном южнее пос. Онгурен (рис. 7в). В образце 2155 проанализировано 185 зерен детритового циркона, 65 из которых показали значения возраста с дискордантностью <10%. Основной возрастной пик (40 зерен) фиксируется на отметке 1833 млн лет, а более мелкий пик – на отметке 1975 млн лет, единичные зерна (7 зерен) имеют более молодые значения в интервале 1675–1785 млн лет (рис. 7в).

Южнее пос. Онгурен на побережье залива Каргалтей (участок 5) был отобран образец 1020 слюдисто-кварцевого сланца, в котором были проанализированы 33 зерна детритового циркона, для 29 из которых получены значения возраста с дискордантностью <10%. Для большинства зерен циркона отмечается возраст в диапазоне 1.84–2.04 млрд лет с основным пиком на отметке 1865 млн лет и более мелким на 2019 млн лет (рис. 7г).

К юго-западу от пос. Еланцы в правом борту р. Анга (участок 6) был отобран слюдистый кварцит (обр. 21108), в котором были проанализированы 100 зерен детритового циркона, для 77 из которых были получены конкордантные значения возраста. Основной возрастной пик формируется на отметке 1835 млн лет (65 зерен), а второй менее значимый пик на отметке 2026 млн лет (рис. 7д).

Анализ полученных результатов геохронологических исследований, совместно с данными геологических исследований, позволяет выделить среди изученных пород, рассматриваемых в составе единой харгитуйской свиты, 3 группы разновозрастных образований.

В первую группу выделяются породы, отобранные в правом борту р. Элигей (участок 1, обр. 2109), которые представлены лейкократовыми гнейсами и чьи зерна циркона имеют исключительно архейские возрастные пики.

Во вторую группу объединяются кварциты и сланцы, отобранные к северу от пос. Онгурен (обр. 2115 на р. Элигей, участок 2, и обр. 2147 на м. Ядор, участок 3), для которых характерно наличие двух разновозрастных пиков: 2331–2461 млн лет и 2903–2973 млн лет, а также присутствие более молодых зерен циркона с возрастом в диапазоне 2150–2220 млн лет. Основанием для объединения данных пород в единую группу является также их близкое пространственное расположение и прорывание их раннепротерозойскими дайками диоритов.

Отдельно, в третьей группе, необходимо рассматривать кварциты и сланцы, отобранные на территории южнее пос. Онгурен на участках 4, 5 и 6, чьи возрасты зерен детритового циркона формируют основной пик в диапазоне 1833–1865 млн лет, а также встречаются единичные зерна с более молодыми возрастами в интервале 1675–1785 млн лет, указывая на то, что эти породы накапливались после внедрения гранитоидов Южно-Сибирского постколлизионного магматического пояса. По геологическим данным породы, которые можно выделить в третью группу, не прорываются раннепротерозойскими дайками долеритов и диоритов, а также дайками карбонатитов с возрастом 1.00 млрд лет.

В соответствии с полученными результатами все следующие разделы с характеристикой пород, относимых к харгитуйской свите, будут приведены с учетом обособившихся трех возрастных групп пород.

3.2.2.1. Морфология цирконов

Первая группа. Наиболее древние цирконы с возрастом около 3090 млн лет представлены преимущественно обломками или короткопризматическими субидиоморфными слабо- или полуокатанными зернами, в которых отмечается преимущественно осцилляторная зональность (рис. 8), реже встречаются незональные зерна циркона. В единичных зернах отмечаются метаморфические каймы.

Рис. 8. Катодолюминесцентные изображения зерен детритового циркона из пород, относимых к харгитуйской свите.

Цирконы, возраст которых соответствует возрастным отметкам 2936 и 2985 млн лет, также характеризуются коротко- и длиннопризматическим субидиоморфным обликом, полуокатанные, преимущественно с осцилляторной зональностью, также в некоторых зернах отмечаются метаморфические каймы (рис. 8).

Цирконы с возрастом около 2860 млн лет представлены коротко- и длиннопризматическими субидиоморфными зернами, как правило, полуокатанными, так же с осцилляторной зональностью (рис. 8).

Наиболее молодые цирконы с возрастами в интервале 2695–2805 млн лет представлены как обломками, так и коротко- и длиннопризматическими зернами слабо- или полуокатанной формы с неотчетливой осцилляторной зональностью (рис. 8).

Вторая группа. Наиболее древние цирконы с возрастом в диапазоне 2869– 2973 млн лет встречаются в виде короткопризматических полуокатанных зерен или обломков, часто с осцилляторной зональностью, реже встречаются зерна с секториальной зональностью или темные зерна без видимой зональности (рис. 8).

Цирконы с возрастом около 2570 млн лет встречаются, в основном, в виде полуокатанных обломков, реже в виде окатанных зерен сферической формы, для которых характерна осцилляторная зональность (рис. 8).

Цирконы с возрастом около 2460 млн лет встречаются преимущественно в виде обломков, и в меньшей степени в виде коротко- и длиннопризматических зерен полуокатанной формы, как правило, с осцилляторной зональностью, однако встречаются и зерна с незональным внутренним строением (рис. 8).

Цирконы с возрастом около 2320–2330 млн лет в основном представлены обломками или короткопризматическими, субидиоморфными, полуокатанными зернами, для них характерно или отсутствие зональности, или слабо выраженная осцилляторная зональность, в большинстве зерен циркона присутствуют каймы (рис. 8).

Наиболее молодые цирконы с возрастами в интервале 2150–2220 млн лет имеют схожие характеристики и представлены преимущественно короткопризматическими зернами полуокатанной или окатанной формы с секториальной или неясно выраженной зональностью (рис. 8).

Третья группа. Цирконы с возрастом около 2025 млн лет представлены преимущественно обломками, реже короткопризматическими зернами, полуокатанной или окатанной формы, в которых обнаруживается как осцилляторная, так и секториальная зональность (рис. 8).

Цирконы с возрастом около 1975 млн лет представлены преимущественно обломками или короткопризматическими субидиоморфными зернами, как правило, с неясной осцилляторной зональностью, реже встречаются разновидности зерен секториальной зональностью или незональные (рис. 8).

Цирконы с возрастом около 1833–1835 млн лет представлены преимущественно в виде обломков с хорошо выраженной осцилляторной зональностью (рис. 8).

Цирконы с возрастами в диапазоне 1675–1785 млн лет встречаются в виде слабо окатанных обломков с осцилляторной зональностью или в виде темных незональных зерен (рис. 8).

3.2.2. Петрографическая характеристика

Первая группа (обр. 2106-2109). Породы, которые были отобраны на р. Элигей, в процессе полевых наблюдений были определены как лейкократовые гнейсы. В шлифах эти породы имеют гранобластовую структуру и полосчатую (гнейсовую) текстуру (рис. 9 а, б). Основными минералами гнейсов являются плагиоклаз (34–38 %), кварц (24–29 %) и калиевый полевой шпат (7–14 %). Зерна плагиоклаза крупные (1.5–2.0 мм), интенсивно серицитизированные, зерна кварца также крупные (0.5–1.5 мм), трещиноватые, имеют волнистое погасание и вытянутую форму. Калиевый полевой шпат представлен в виде небольших зерен (0.2–0.5 мм), часто имеет реакционные границы с зернами кварца. Как второстепенные минералы гнейсах встречается биотит, В часто хлоритизированный, роговая обманка и рудный минерал. Вторичные минералы представлены хлоритом, серицитом и эпидотом. В качестве акцессорного минерала встречается циркон.

Вторая группа (обр. 0898-0899, 08101-08102, 2112-2116, 2125-2126, 2144, 2146-2151, 1496-1497).

Среди пород второй группы, отобранных севернее пос. Онгурен, в правом борту р. Элигей и в райне мыса Ядор, были изучены кварциты, слюдистокварцевые и плагиоклаз-слюдисто-кварцевые сланцы (рис. 9 в, г, д, е). Все разновидности пород имеют лепидогранобластовую структуру, текстура кварцитов, как правило, массивная или слабоориентированная, у сланцев – сланцеватая.

Главными породообразующими минералами кварцитов являются кварц (75– 85 %) и слюды, среди которых встречаются мусковит (1–6 %), хлорит (7–12 %) и/или биотит (2–5 %), также присутствуют немногочисленные зерна серицитизированного плагиоклаза (до 10 %). Как акцессорные минералы в кварцитах могут присутствовать циркон, апатит, турмалин, рутил и рудный минерал.

Слюдисто-кварцевые сланцы имеют схожий состав с кварцитами, отличаясь лишь бо́льшим содержанием слюд: мусковита (4–8 %), биотита (2–12 %) и/или хлорита (2–14 %).

Плагиоклаз-слюдисто-кварцевые сланцы характеризуются содержаниями кварца 58–71 %, для них характерно присутствие интенсивно серицитизированного плагиоклаза 11–13 %, как правило, в них также присутствует биотит 10–16 %, который часто замещается хлоритом, и мусковит до 10 %. В некоторых разновидностях встречаются зерна турмалина до 3 %. В качестве акцессорных минералов отмечается циркон, апатит, эпидот и рудный минерал.

Третья группа (обр. 21103, 21108, 21110, 21115, 21126-21128, 1020, 1023). В соседнем заливе от м. Ядор, но расположенном южнее пос. Онгурен, также были отобраны образцы пород, которые представляют собой слюдисто-кварцевые сланцы, состоящие из кварца (76–80 %), мусковита (11–15 %) и хлорита (3–8 %). Отличительной особенностью этих сланцев является наличие более крупных на фоне общей массы гравелин кварца размером до 1.2 мм. Структура этих пород лепидогранобластовая или бластомилонитовая, текстура сланцеватая (рис. 9 ж).

К югу от пос. Онгурен в районе заливе Каргалтей были опробованы слюдисто-кварцевые сланцы, которые состоят преимущественно из кварца (71–77 %), мусковита (11–20 %) и хлорита (7–9 %). Среди акцессорных минералов можно выделить циркон, апатит, турмалин и рудный минерал. Кварц в сланцах наблюдается как в виде более крупных зерен (до 0.6 мм) с волнистным погасанием, так и в виде новообразованных гранобластовых мелких агрегатов. Слюды

распространены в виде мелких чешуек, вытянутых в одном направлении. Также в породах в небольшом количестве может присутствовать титанит и эпидот. Структура пород лепидогранобластовая, текстура сланцеватая, микроплойчатая.

В долине р. Анга вблизи пос. Еланцы были изучены 3 обнажения на правом и левом бортах реки. Во всех обнажениях наблюдалось чередование кварцитов, слюдисто-кварцевых сланцев и маломощных тел амфиболовых сланцев. В составе кварцитов отмечаются кварц (75–94 %) и мусковит (5–9 %) (рис. 9 з), иногда встречаются зерна граната (до 13 %) и единичные чешуйки хлорита и биотита. Породы имеют лепидогранобластовую структуру и массивную или слабо ориентированную текстуру. Слюдисто-кварцевые сланцы как породообразующие минералы содержат кварц (84–87 %) и мусковит (12–13 %). Часто в сланцах наблюдаются кристаллы граната (до 3 %) размером от 0.1 до 0.52 мм и эпидота. Структура пород лепидогранобластовая, текстура сланцеватая. Во всех разностях пород кварц преимущественно перекристаллизован в средне-мелкозернистый гранобластовый агрегат, изредка встречаются реликтовые зерна кварца, для которых характерны трещиноватость, волнистое погасание и реакционные границы.

Рис. 9. Микрофотографии шлифов (николи скрещены): а-б – лейкократовые гнейсы (первая группа), участок 1; в-г – кварциты (вторая группа), участок 2; д – плагиоклаз-слюдисто-кварцевый сланец (вторая группа), участок 2; е – слюдисто-кварцевый сланец (вторая группа), участок 3; ж – слюдисто-кварцевый сланец (третья группа), участок 4; з – кварцит (третья группа), участок 6.

3.2.3. Геохимическая характеристика

Геохимическая характеристика пород, относимых к харгитуйской свите, приводится по трем выделенным группам.

Первая группа. Лейкократовые гнейсы характеризуются содержаниями SiO₂, составляющими 68.73-69.96 мас.%, умеренными содержаниями $Al_2O_3 = 15.22-16.15$ мас.% и пониженными концентрациями $K_2O = 1.58-2.94$ мас.% (прил. 1).

На классификационной диаграмме А.Н. Неелова (Неелов, 1980), созданной для метаморфизованных осадочных пород и основанной на отношениях Al_2O_3/SiO_2 (ат. кол-ва) и $Fe_2O_3+FeO+MnO+MgO+CaO$ (ат. кол-ва), точки составов гнейсов попадают в поле полимиктовых алевролитов (рис. 10 а). На диаграмме $log(Fe_2O_{3tot}/K_2O) - log$ (SiO₂/Al₂O₃) М.М. Хиррон (Herron, 1988), точки составов гнейсов располагаются в поле вакк (рис. 10 б).

Рис. 10. Классификационные диаграммы А.Н. Неелова (Неелов, 1980) (а) и М.М. Хиррон (Herron, 1988) (б) для пород первой, второй и третьей выделенных групп.

Поля на диаграмме А.Н. Неелова: I — мономиктовые (кварцевые) псаммотолиты: Ia - слабожелезистые; II — олигомиктовые псаммитолиты, силициты: IIa - слабожелезистые; III —

субсилициты, кислые туффиты: IIIa-1 — аркозы, IIIa-2 — полимиктовые песчаники; IV — олигомиктовые алевролиты, кислые туффиты: IVa — полимиктовые алевролиты. Рассчитанные параметры: $a = Al_2O_3/SiO_2$, $b = F_2O_3+FeO+MnO+MgO+CaO$ (содержания оксидов в ат. кол.).

Гнейсы характеризуются сильно фракционированными спектрами распределения РЗЭ (La_n/Yb_n=22–137) с существенным преобладанием легких РЗЭ над тяжелыми (рис. 11). Европиевая аномалия практически отсутствует (Eu/Eu* = 0.89–0.92), значения Gd_n/Yb_n варьируются в пределах 3.37–6.21. Для исследуемых пород характерны низкие содержания Nb (1.67–2.40 г/т), Y (1.08–1.57 г/т) и высокие концентрации Sr (554–1176 г/т).

Рис. 11. Спектры распределения редкоземельных элементов, нормированные по хондриту (Wakita et al., 1970), для пород первой выделенной группы. Серым цветом показано поле спектров распределения редкоземельных элементов в ТТГ-гранитоидах с возрастом 2.88 млрд лет Сарминского сегмента (Donskaya et al., 2009).

Проанализированный образец лейкократового гнейса демонстрирует очень низкие значения отношения 147 Sm/ 144 Nd, составляющее 0.0800, и 143 Nd/ 144 Nd, равное 0.510413. Значение Nd модельного возраста T_{Nd} (DM) составляет 3.1 млрд лет (прил. 4).

Вторая группа. Составы кварцитов и слюдисто-кварцевых сланцев второй группы идентичны друг другу. Содержание SiO₂ в них составляет 89.77–96.72 мас.%, а Al₂O₃ = 0.82–4.45 мас.%. Плагиоклаз-слюдисто-кварцевые сланцы характеризуются меньшими по сравнению с кварцитами и слюдисто-кварцевыми сланцами концентрациями SiO₂ (68.82–74.31 мас.%) и более высокими содержаниями Al₂O₃ (12.22–15.18 мас.%), а также TiO₂, Fe₂O_{3tot} и MgO (прил. 1).

На классификационной диаграмме А.Н. Неелова (Неелов, 1980) все точки составов кварцитов и слюдисто-кварцевых сланцев сосредоточены в поле кварцевых песчаников (рис. 10 а). Плагиоклаз-слюдисто-кварцевые сланцы на этой диаграмме попадают в поля полимиктовых песчаников и алевролитов. На диаграмме М.М. Хиррона (Herron, 1988), кварциты и слюдисто-кварцевые сланцы попадают в поля сублититов и кварцевых аренитов, а плагиоклаз-слюдисто-кварцевые сланцы в поле кварцевые сланцы в поле вакк (рис. 10 б).

Кварциты и слюдисто-кварцевые сланцы характеризуются фракционированными спектрами распределения редкоземельных элементов (La_n/Yb_n=7–16), при крутом наклоне спектров в области легких РЗЭ (La_n/Sm_n=3.2–5.1) и пологом наклоне в диапазоне тяжелых РЗЭ (Gd_n/Yb_n=1.4–2.4) (рис. 12). Породы обнаруживают в разной степени выраженную европиевую аномалию: от отрицательной до слабоположительной, Eu/Eu*=0.46–1.10 (рис. 12). Плагиоклазслюдисто-кварцевые сланцы обнаруживают более высокие содержания РЗЭ по сравнению с кварцитами и слюдисто-кварцевыми сланцами, при этом имеют параллельные им спектры РЗЭ с близкими значениями отношений La_n/Yb_n (8–15), La_n/Sm_n (3.2–3.7), Gd_n/Yb_n=(1.4–2.0) и Eu/Eu* (0.65–0.83) (прил. 1).

Рис. 12. Спектры распределения редкоземельных элементов, нормированные по хондриту (Wakita et al., 1970), для пород второй выделенной группы.

Для плагиоклаз-слюдисто-кварцевых сланцев также характерны более высокие концентрации редких элементов относительно кварцитов и слюдисто-кварцевых сланцев, например, Th (11.17–12.37 г/т против 0.85–4.30 г/т), Nb (13.40–17.08 г/т против 1.12–4.36 г/т), Y (13.70–18.41 г/т против 1.59–6.17 г/т).

Изученные образцы слюдисто-кварцевых сланцев демонстрирует высокие для осадочных пород значения отношения 147 Sm/ 144 Nd = 0.1112–0.1281 и умеренные значения отношения 143 Nd/ 144 Nd = 0.511156–0.511390. Значение Nd модельного возраста T_{Nd} (DM) составляют 3.0–3.1 млрд лет (прил. 4).

Третья группа. По своему химическому составу кварциты и слюдистокварцевые сланцы третьей группы обнаруживают значительное сходство. Содержания SiO₂ варьируются от 88.85 до 96.30 мас.% в кварцитах и от 84.81 до 92.93 мас.% в сланцах. Концентрации Al₂O₃ варьируются в пределах 1.52–6.24 и 3.81–8.41 мас.% для кварцитов и сланцев, соответственно (прил. 1). По классификации А.Н. Неелова (Неелов, 1980) кварциты соответствуют кварцевым песчаникам, а сланцы – олигомиктовым песчаникам и слабожелезистым кварцевым песчаникам (рис. 10 а). На диаграмме М.М. Хиррон (Herron, 1988) точки составов сланцев сосредоточены преимущественно в полях лититов и сублититов, а кварциты попадают в поля субаркозов, кварцевых аренитов и железистых песчаников (рис. 10 б).

Спектры РЗЭ для кварцитов и слюдисто-кварцевых сланцев обнаруживают схожий характер распределения. Для кварцитов и сланцев отмечаются фракционированные спектры РЗЭ (La_n/Yb_n=3–14) с отрицательной европиевой аномалией (Eu/Eu* = 0.58–0.83) и наиболее пологими спектрами в области тяжелых РЗЭ (Gd_n/Yb_n=0.99–1.82) среди всех изученных пород (рис. 13). Для пород третьей группы также характерны более высокие содержания таких элементов, как Th (2.70–12.99 г/т), Nb (1.39–8.83 г/т), Y (2.94–13.46 г/т), La (4.34–31.67 г/т) относительно кварцитов и сланцев второй группы.

Рис. 13. Спектры распределения редкоземельных элементов, нормированные по хондриту (Wakita et al., 1970), для пород третьей выделенной группы. Желтым цветом показано поле спектров распределения редкоземельных элементов в породах первой фазы приморского

комплекса, сиреневым цветом показано поле спектров распределения редкоземельных элементов в породах второй фазы приморского комплекса (Донская и др., 2003)

Изученные образцы слюдисто-кварцевых сланцев третьей группы обнаруживают умеренные значения отношений 147 Sm/ 144 Nd = 0.1063–0.1181 и 143 Nd/ 144 Nd = 0.511294–0.511514. Значение Nd модельного возраста T_{Nd} (DM) в обоих образцах близки 2.6 млрд лет (прил. 4).

3.2.4. Геодинамические условия формирования и источники вещества

Первая группа. В первую группу были объединены амфиболовые и лейкократовые гнейсы, относимые ранее к нижней подсвите харгитуйской свиты, распространенные к северу от пос. Онгурен. Изученные детритовые цирконы из лейкократового гнейса демонстрируют исключительно архейские значения возраста. Большинство проанализированных цирконов из гнейсов имеют возраст в интервале 2860-2985 млн лет (рис. 7 а). Наиболее близкими по возрасту и известными в пределах исследуемого региона магматическими породами, которые могли являться источниками этих цирконов, являются ТТГ-гранитоиды (2884 ± 12 млн лет (Donskaya et al., 2009)), распространенные в северной части Сарминского сегмента Акитканского орогенного пояса. Более молодые зерна циркона с возрастами в интервале 2695–2805 млн лет, присутствующие в небольших количествах В изученном лейкократовом гнейсе, могли поступать ИЗ магматических комплексов, известных в пределах Анабарского супертеррейна (Ларичев и др., 2023). Основываясь на полученных данных, однозначно можно сделать вывод, что протолиты лейкократовых гнейсов накапливались после временной отметки в 2.7 млрд лет. Нижнюю границу формирования протолитов этих гнейсов провести достаточно затруднительно, однако, поскольку в исследуемой пробе не встречаются зерна циркона с возрастами в интервале 2.4–2.5 млрд лет и моложе, которые отмечаются в других исследованных пробах, как харгитуйской свиты, так и иликтинской свиты (см. обсуждение ниже), с высокой

долей вероятности можно предположить, что к временной отметке в 2.5 млрд лет протолиты гнейсов уже могли быть сформированы.

Согласно классификациям (Неелов, 1980, Herron, 1988) протолитами лейкократовых гнейсов были полимиктовые алевролиты или граувакки, т.е. незрелые осадочные породы. Ha диаграммах $SiO_2/20-(K_2O+Na_2O)-$ (MgO+FeO*+TiO₂) (Roser, Korsch, 1999) (рис. 14 a), La/Th-Hf (Floyd, Leveridge, 1987) (рис. 136), TiO₂–Zr (Hayashi et al., 1997) (рис. 14 в) лейкократовые гнейсы располагаются в полях кислых магматических пород или вблизи них. По своим лейкократовые гнейсы обнаруживают геохимическим характеристикам значительное сходство с ТТГ-гранитоидами с возрастом 2.88 млрд лет Сарминского сегмента, в том числе по содержанию основных петрогенных оксидов и редких элементов (Donskaya et al., 2009), а именно по низким содержаниям Nb, Y, высоким концентрациям Sr, а также по распределению РЗЭ и отсутствию европиевой аномалии (рис. 11).

Рис. 14. Расположение точек составов пород, выделяемых в составе харгитуйской свиты, на диаграммах $SiO_2/20-(K_2O+Na_2O)-(MgO+FeO*+TiO_2)$ (Roser, Korsch, 1999) (a), La/Th-Hf (Floyd, Leveridge, 1987) (б), TiO_2-Zr (Hayashi et al., 1997) (в).

Кроме того, лейкократовые гнейсы и ТТГ-гранитоиды имеют близкие значения Nd модельного возраста (3.1 млрд лет в лейкократовом гнейсе и 3.1–3.2 млрд в ТТГ-гранитоидах (Donskaya et al., 2009)). На диаграмме $\varepsilon_{Nd}(t) - U$ -Pb возраст линия изотопного состава лейкократового гнейса попадает в поле эволюции изотопного состава Nd TTГ гранитоидов (рис. 15).

Таким образом, наиболее вероятно, что накопление протолитов пород первой группы осуществлялось преимущественно за счет разрушения ТТГ-гранитоидов и в непосредственной близости от них.

Вторая группа. Во второй группе были детально изучены кварциты, слюдисто-кварцевые и плагиоклаз-слюдисто-кварцевые сланцы, распространенные к северу от пос. Онгурен. Изучение детритовых цирконов из слюдисто-кварцевых сланцев показало, что эти породы преимущественно

содержат раннепротерозойские и, в меньшей степени, архейские зерна. Цирконы с возрастом 2220 и 2320-2330 млн лет не имеют известных возрастных аналогов среди магматических пород как Акитканского орогенного пояса, так и всей южной части Сибирского кратона, поскольку временной интервал 2.2-2.4 млрд лет, в целом, считается практически полностью амагматичным для Сибирского кратона (Donskaya, 2020), и предполагаемые источники терригенного материала с близким возрастом в настоящий момент неизвестны. Цирконы возрастом около 2460 млн лет не встречаются в магматических комплексах в пределах Акитканского орогенного пояса, однако в пределах Алданского супертеррейна близкий возраст имеют гранитоиды нелюкинского комплекса (2.4-2.5 млрд лет (Сальникова и др., 1997; Котов и др., 2004)), распространенные в зоне сочленения Чара-Олекминского и Западно-Алданского блоков Алданского супертеррейна. Для самых молодых цирконов (2150 млн лет) в качестве источников сноса можно рассматривать граниты Хомутского массива Голоустенской зоны Акитканского орогенного пояса с возрастом 2153±11 млн лет (Donskaya et al., 2016). Цирконы архейского возраста (2860-2870 млн лет) вероятнее всего поступали также за счет разрушения ТТГгранитоидов или при размыве пород первой группы. Наиболее молодые полученные значения возраста цирконов указывают на то, что породы второй группы накапливались после временной отметки 2.15 млрд лет. Нижняя граница формирования этих пород маркируется временем метаморфизма, в который были вовлечены породы второй группы на этапе 1.95 млрд лет (Савельева и др., 2019).

Согласно классификации А.Н. Неелова (Неелов, 1980) кварциты и слюдистокварцевые сланцы классифицируются как кварцевые песчаники, а на диаграмме SiO₂/20-(K₂O+Na₂O)-(MgO+FeO*+TiO₂) (Roser, Korsch, 1999) точки их составов смещаются в поле зрелых терригенных образований (рис. 14 а). Плагиоклазслюдисто-кварцевые сланцы, которые встречаются среди кварцитов, В неметаморфизованном состоянии классифицируются как полимиктовые песчаники и алевролиты, а на диаграмме (Roser, Korsch, 1999) точки составов этих пород сосредоточены в поле, отражающем состав источника (рис. 14 а), между дацитами наиболее андезитами, поэтому эти разновидности сланцев оказались И

информативны для характеристики источника пород второй группы по геохимическим данным. Однако, в любом случае, на диаграммах La/Th-Hf (Floyd, Leveridge, 1987) (рис. 14 б), TiO₂–Zr (Hayashi et al., 1997) (рис. 14 в) большинство точек всех пород второй группы тяготеют к полям кислых источников. Невысокие концентрации Zr и Hf в кварцитах и слюдисто-кварцевых сланцах свидетельствуют о том, что эти породы, вероятнее всего, не были подвержены сортировке и переотложению. В пользу кислых источников терригенного материала свидетельствует наличие преимущественно отрицательной европиевой аномалии на спектрах распределения редкоземельных элементов для всех проанализированных пород (рис. 12). Параллельные спектры распределения РЗЭ для кварцитов, слюдисто-кварцевых сланцев и плагиоклаз-слюдисто-кварцевых сланцев свидетельствует об идентичности их источников. Таким образом, следует предположить, что накопление терригенных пород второй группы происходило за счет разрушения магматических пород преимущественно кислого состава, возможно, с небольшой долей участия материала из пород среднего (андезитового) состава. Проанализированные слюдисто-кварцевые сланцы имеют значения Nd модельного возраста 3.0–3.1 млрд лет. Несмотря на то, что эти значения близки Nd модельному возрасту лейкократовых гнейсов первой группы, слюдисто-кварцевые сланцы имеют отличные от лейкократовых гнейсов линии эволюции изотопного состава Nd (рис. 15), что указывает на их различные коровые протолиты.

Третья группа. Кварциты и слюдисто-кварцевые сланцы третьей группы были изучены на трех участках, расположенных южнее пос. Онгурен. Изучение зерен детритового циркона из слюдисто-кварцевых сланцев третьей группы показало, что они формируют 3 возрастных пика на отметках около 1835–1865, 1975 и 2020–2025 млн лет. Источниками цирконов с возрастом в интервале 1835– 1865 млн лет, которые присутствуют в подавляющем большинстве во всех пробах, наиболее вероятно, являлись породы, широко распространенные в пределах исследуемой Южно-Сибирского территории И входящие В состав постколлизионного магматического пояса (1.84-1.88 млрд лет (Donskaya,

Gladkochub, 2021)), которые представлены гранитоидами приморского и ирельского комплексов (Донская и др., 2003, 2005; Poller et al., 2005), а также кислыми вулканитами акитканской серии (Неймарк и др., 1998; Ларин и др., 2003; Донская и др., 2008). Для цирконов с возрастными отметками около 1975 млн лет и 2026 млн лет в качестве источников можно рассматривать гранито-гнейсы (1985 \pm 15 млн лет (Донская и др., 2016)) и граниты Еловского массива (2018 \pm 18 млн лет (Poller et al., 2005)) Голоустенского сегмента Акитканского орогенного пояса, а также гранитоиды кутимского (2019 \pm 16 млн лет (Донская и др., 2013)) и чуйского (2020 \pm 12 млн лет (Неймарк и др., 1998)) комплексов Чуйского сегмента Акитканского орогенного пояса Сибирского кратона. Возрасты наиболее молодых зерен циркона в диапазоне 1675–1785 млн лет, не формирующих значимых пиков, указывает на то, что накопление пород третьей группы началось после временной отметки 1675 млн лет, а, значит, уже после окончательного формирования Акитканского орогенного пояса и Сибирского кратона, как единой структуры (Donskaya, 2020).

По внешнему облику и петрографическому составу породы третьей группы схожи с породами второй группы и так же представлены преимущественно кварцитами и слюдисто-кварцевыми сланцами. Отличительной особенностью является присутствие граната в некоторых слюдисто-кварцевых сланцах участка р. классификации A.H. Неелова (Неелов, 1980) Анга. Согласно В неметаморфизованном состоянии исследуемые породы третьей группы представляли собой кварцевые и олигомиктовые песчаники. На диаграмме SiO₂/20-(K₂O+Na₂O)-(MgO+FeO*+TiO₂) (Roser, Korsch, 1999) (рис. 14 а) точки составов всех исследуемых пород этой группы смещены в поле зрелых образований. На диаграмме TiO₂-Zr (Hayashi et al., 1997) точки составов пород третьей группы располагаются в поле кислых источников (рис. 14 в). Следует отметить, что в большинстве своем породы третьей группы обнаруживают содержания Zr выше, чем кварциты и слюдисто-кварцевые сланцы второй группы (61.95–287.90 г/т при среднем 141.85 г/т против 40.15–210.71 г/т при среднем 80.43 г/т) (прил. 1). Все породы третьей группы обнаруживают фракционированные

спектры распределения редкоземельных элементов, часто, с отрицательной европиевой аномалией, что также указывает на их формирование за счет разрушения кислых источников. Кварциты и слюдисто-кварцевые сланцы имеют пологие спектры в области тяжелых редких земель, сходные с гранитоидами приморского комплекса (рис. 13) (Донская и др., 2003, 2005). Также для гранитоидов первой фазы приморского комплекса характерно присутствие положительной европиевой аномалии, а для гранитоидов второй фазы комплекса – явно выраженная отрицательная европиевая аномалия, ЧТО позволяет рассматривать породы обоих фаз приморского комплекса, как основные источники поступления терригенного материала в бассейны седиментации при накоплении пород третьей группы. В целом, наиболее вероятным представляется, что основным источником терригенного материала при формировании пород третьей группы являлись породы Южно-Сибирского постколлизионного магматического пояса с возрастом 1.84–1.88 млрд лет, в том числе гранитоиды приморского и ирельского комплексов, для которых характерны повышенные содержания таких элементов, как Th, Zr, Y, Nb (Донская и др., 2003, 2005; Donskaya, Gladkochub, 2021), что также наблюдается и в исследуемых породах. Значение Nd модельного возраста T_{Nd}(DM) в изученных слюдисто-кварцевых сланцах близки 2.6 млрд лет, что перекрывается с Nd модельным возрастом пород Южно-Сибирского постколлизионного магматического пояса (Donskaya, Gladkochub, 2021).

Остается открытым вопрос, на каком временном этапе могло происходить накопление протолитов кварцитов и слюдисто-кварцевых сланцев, в которых возраст самых молодых детритовых цирконов составляет 1675 млн лет, а прорываются исследуемые метатерригенные породы в изученных обнажениях только неопротерозойскими дайками долеритов с возрастом около 0.72 млрд лет, а перекрываются эти породы уже молодыми эдиакарскими терригенными породами байкальской серии. Отсутствие на всей площади распространения кварцитов и слюдисто-кварцевых сланцев третьей группы свидетельств прорывания их дайками карбонатитов с возрастом 1.00 млрд лет (Савельева и др., 2016), позволяет

предполагать, что время формирования этих пород ограничено временным интервалом 1.00–0.72 млрд лет.

3.3. Иликтинская свита

Иликтинская свита сарминской серии протягивается от верховьев р. Анга на юге до верховьев р. Бол. Анай на севере. Породы иликтинской свиты были опробованы и изучены на 5 участках Сарминского сегмента Байкальского выступа фундамента: Тытери (1), Глубокая Падь (2), Онгурен (3), Курга (4) и Малая Иликта (5) (рис. 16). Всего было отобрано и проанализировано 47 проб, в том числе 3 геохронологические пробы для определения возраста детритовых цирконов. Породы иликтинской свиты на всех исследованных участках были изучены в пределах верхней части свиты и представлены только терригенными породами. Ни на одном из участков не были отмечены эффузивы среднего и кислого состава, которые включены в верхнюю часть иликтинской свиты на основании данных геологического картирования (Галимова и др., 2009). Однако необходимо отметить, что эффузивы были закартированы только в истоках р. Сарма и Малая Иликта (Галимова и др., 2009), а изученные участки располагались в северовосточной части выходов пород иликтинской свиты, где в ее верхней части отмечаются только терригенные породы (Галимова и др., 2009).

Рис. 16. Геологическая карта Западного Прибайкалья (Галимова и др., 2009) и расположение участков детальных работ в пределах выходов пород иликтинской свиты.

3.3.1. Петрографическая характеристика

На участке Тытери (участок 1) (мыс Тытери оз. Байкал) породы верхней части иликтинской свиты представлены преимущественно песчаниками (рис. 17 а). Песчаники сложены обломками пород и минералов полуокатанной и неокатанной формы. Цемент базально-поровый, глинисто-слюдистый или полностью перекристаллизованный В хлорит-серицит-полевошпат-кварцевый агрегат. Структура пород псаммитовая, бластопсаммитовая, псефопсаммитовая, текстура пятнистая, сланцеватая. Основными минералами, слагающими песчаники, являются кварц (17-50 %), плагиоклаз (5-23 %) и калиевый полевой шпат (19-25 %). Среди второстепенных минералов встречаются серицит или мусковит,

биотит, хлорит, карбонат и рудный минерал. В качестве акцессорных минералов присутствуют циркон, апатит, ортит и титанит. Обломки пород (24–30 %) представлены преимущественно гранитами, однако встречаются также обломки кварцитов, алевролитов, кремней и эффузивов основного состава.

Среди пород верхней части иликтинской свиты на участке Глубокая Падь (участок 2) (район пади Глубокая, расположенной в 3 км к северо-западу от пос. Онгурен) отмечаются метапесчаники и сланцы (рис. 17 в, г). Метапесчаники имеют лепидонематогранобластовую, лепидогранобластовую или бластопсаммитовую структуру, сланцеватую или пятнистую текстуру. Главными минералами, слагающими метапесчаники, являются кварц (38-40 %) и плагиоклаз (24-39 %). Второстепенные минералы представлены серицитом, хлоритом, амфиболом (тремолит-актинолитом), калиевым полевым шпатом и рудным минералом. Акцессорные минералы – циркон, апатит, турмалин. Изредка встречаются обломки пород – преимущественно граниты. Обломки зерен и пород трещиноватые, давленые, имеют неровные очертания и реакционные границы. Сланцы на этом участке имеют сланцеватую текстуру И фибробластовую или нематолепидогранобластовую структуру. Среди главных минералов сланцев отмечается кварц (39–40 %), плагиоклаз (19–24 %), амфибол (тремолит-актинолит) (до 13 %), а также глинистые минералы (до 15 %) и хлорит (до 13 %), в меньшем количестве в сланцах встречаются калиевый полевой шпат, серицит и рудный минерал, среди акцессорных минералов можно выделить турмалин, циркон и апатит.

С южной стороны пос. Онгурен (участок (3) Онгурен) в крупном коренном обнажении породы верхней части иликтинской свиты представлены рассланцованными мелкозернистыми песчаниками (рис. 17 д, е). Структура пород бластопсаммитовая, лепидогранобластовая, текстура линейная, сланцеватая. Минеральный состав песчаников представлен кварцем (30–51 %) и плагиоклазом (23–28 %), второстепенными минералами являются серицит, хлорит, мусковит, калиевый полевой шпат и рудный минерал, акцессории – циркон, апатит, титанит и турмалин. Цемент полностью перекристаллизован. Зерна кварца имеют

волнистое погасание, плагиоклаз интенсивно замещается серицитом. Песчаники сильно трещиноватые, рассланцованные, обильно инъецированы гидроокислами железа.

На р. Курга (левый приток р. Правая Иликта) (участок (4) Курга) отмечаются преимущественно неизмененные разности песчаников верхней части иликтинской свиты (рис. 17 б), а также сланцы в подчиненном количестве. Песчаники характеризуются псаммитовой, псефопсаммитовой ИЛИ бластопсаммитовой структурой и ориентированной или пятнистой текстурой. Содержание обломков пород (граниты, кварциты, филлиты) в песчаниках варьирует от 9 до 24 %. Большинство обломков пород имеют линзовидную полуокатанную форму, реже встречаются окатанные и не окатанные обломки. Цемент преимущественно базально-поровый, слюдисто-глинистый или перекристаллизован в хлоритсерицитовый агрегат. Основными минералами, слагающими песчаники, являются кварц (18-33 %), плагиоклаз (15-28 %), калиевый полевой шпат (9-25 %), в качестве второстепенных минералов можно отметить серицит-мусковит, хлорит, глинистые минералы, эпидот, амфибол и рудный минерал. Акцессорные минералы – циркон, апатит, турмалин, титанит. Сланцы имеют бластоалевритовую структуру и сланцеватую текстуру. Главными минералами являются серицит (73 %) и кварц (20 %), также встречаются хлорит и рудный минерал.

На участке Малая Иликта (участок 5) в коренном обнажении встречены мелкозернистые рассланцованные песчаники и сланцы (рис. 17 ж,з). Для песчаников характерна лепидогранобластовая структура и сланцеватая текстура. Основными породообразующими минералами являются кварц (25–30 %), плагиоклаз (31–36 %) и эпидот (13–17 %). Они располагаются в виде обломков в мелкозернистом перекристаллизованном матриксе, выполненном полевошпаткварцевым агрегатом. Крупные зерна кварца вытянуты согласно с общей направленностью сланцеватости в породе и имеют волнистое погасание. Второстепенные минералы представлены серицитом, хлоритом, кальцитом, титанитом и рудным минералом. Сланцы сложены серицитом (30–45 %), хлоритом

(20–30 %) и кварцем (20–25 %), в меньших количествах отмечается эпидот, титанит и рудный минерал, также по трещинам в породе развиваются гидроокислы железа.

Рис. 17. Микрофотографии шлифов (николи скрещены) из пород иликтинской свиты.

Проведенные геологические и петрографические исследования терригенных пород верхней части иликтинской свиты показали присутствие на всех участках пород только двух типов, а именно песчаников и сланцев. Также в породах на всех участках отмечаются В разной степени исследованных проявленные динамометаморфические преобразования, причем степень этих изменений хорошо коррелируется с близостью расположения пород относительно зоны раннепалеозойского коллизионного шва, соединяющего породы фундамента Сибирского кратона с породами раннепалеозойского Ольхонского террейна Центрально-Азиатского пояса. Другими складчатого словами, наиболее неизмененные разности терригенных пород встречаются на участках Тытери и Курга, в то время как в породах верхней части иликтинской свиты на участках Малая Иликта Глубокая Падь, Онгурен И отмечаются наибольшие динамометаморфические преобразования.

3.3.2. Геохимическая характеристика

Породы двух выделенных на основании геологических и петрографических исследований групп, а именно группа песчаников и группа сланцев, обнаружили существенные различия петрохимических характеристик. В частности, концентрации SiO₂ в песчаниках составляют 65–78 мас. %, а в сланцах – 57–65 мас. % (прил. 2). Для сланцев характерны более высокие содержания Al₂O₃ относительно песчаников (15-19 мас. % против 9-13 мас. %), а также сланцы по сравнению с песчаниками обнаруживают преимущественно более высокие концентрации TiO₂ (0.70–0.89 мас. % против 0.36– 0.69, 0.84 мас. %) (рис. 18 а). Кроме того, в сланцах отмечаются повышенные содержания MgO изменяющиеся от 2.50 до 4.13 мас. %, в то время как в песчаниках концентрации MgO варьируются от 1.15 до 2.66 мас. % (рис. 17 б). Исследованные терригенные породы отчетливо разделились на две группы по величине гидролизатного модуля (ГМ = $(Al_2O_3+TiO_2+Fe_2O_3+FeO+MnO)/SiO_2)$ с пограничным значением 0.32 и по величине фемического модуля ($\Phi M = (Fe_2O_3 + FeO + MnO + MgO)/SiO_2$) с пограничным

значением 0.14. Так, для песчаников характерны вариации ГМ от 0.17 до 0.32, что позволяет отнести их к группе силитов по классификации Я.Э. Юдович, М.П. Кетрис (Юдович, Кетрис, 2000), а сланцы, в свою очередь, характеризуются значениями ГМ = 0.34–0.50, что классифицирует их, как сиаллиты. Значения фемического модуля в песчаниках составляют 0.05–0.13, а в сланцах 0.14–0.22, что позволяет классифицировать их как гипо- и нормофемические породы (Юдович, Кетрис, 2000). Для всех пород характерна положительная корреляция между гидролизатным и фемическим модулями (рис. 18 в). Песчаники и сланцы обнаруживают перекрывающиеся значения титанового модуля (TM = TiO₂/Al₂O₃), который в песчаниках составляет 0.03–0.08, а в сланцах 0.04–0.05, что позволяет относить все породы к нормотитанистым образованиям (Юдович, Кетрис, 2000). В то же время, для песчаников отмечается слабовыраженная положительная корреляция между титановым и фемическим модулями, а для сланцев фиксируется явная отрицательная корреляция между этими модулями (рис. 18 г).

Рис. 18. Вариационные и модульные диаграммы для песчаников и сланцев иликтинской свиты: а — TiO₂—Al₂O₃, б — MgO—Al₂O₃, в — модульная диаграмма ФМ—ГМ, г — модульная

диаграмма ТМ—ФМ (описание см. в тексте). Штриховые линии на диаграммах в и г — линии тренда аппроксимации (фиолетовая линия для точек составов песчаников, зеленая линия для сланцев).

На классификационной диаграмме А.Н. Неелова (Неелов, 1980) точки составов песчаников преимущественно попадают в поля полимиктовых и граувакковых песчаников, а сланцы располагаются в полях полимиктовых и граувакковых алевролитов и алевропелитовых аргиллитов (рис. 19 а). На диаграмме М.М. Хиррон (Herron, 1988), основанной на отношениях Fe_2O_{3tot}/K_2O и SiO_2/Al_2O_3 , точки составов песчаников сосредоточены преимущественно в поле вакк, а также, в меньшей степени, в полях лититов и железистых песчаников, точки составов сланцев располагаются в поле (рис. 19 б).

Рис. 19. Точки составов песчаников и сланцев иликтинской свиты на классификационной диаграмме А.Н. Неелова (Неелов, 1980) (а) и диаграмме М.М. Хирон (Herron, 1988) (б). Поля составов на диаграмме А.Н. Неелова: I — мономиктовые (кварцевые) псаммотолиты; II — олигомиктовые псаммитолиты, силициты; III — субсилициты, кислые туффиты: IIIa-1 — аркозы, IIIa-2 — полимиктовые песчаники, IIIб — граувакковые песчаники; IV — олигомиктовые алевролиты, кислые туффиты: IVa — полимиктовые алевролиты, IVб — граувакковые алевролиты; V — Va — алевропелитовые аргиллиты; VI — VIa — пелитовые аргиллиты. Рассчитанные параметры: a = Al2O3/SiO2, b = F2O3 + FeO + MnO + MgO + CaO (содержания оксидов в ат. кол.).

Песчаники и сланцы характеризуются фракционированными спектрами распределения РЗЭ (рис. 20, 21), в том числе для песчаников (La/Yb)_n = 3.6–23.3, а для сланцев – (La/Yb)_n= 3.4–12.3. Для всех пород наблюдается в разной степени выраженная отрицательная европиевая аномалия Eu/Eu*=0.54–0.90. Большинство проанализированных пород обнаруживают пониженные содержания редкоземельных элементов относительно постархейского австралийского сланца (PAAS), состав которого близок к среднему составу верхней континентальной коры (рис. 20, 21).

Рис. 20. Спектры распределения редкоземельных элементов в песчаниках иликтинской свиты, нормированные к хондриту (Wakita et al., 1971).

Рис. 21. Спектры распределения редкоземельных элементов в сланцах иликтинской свиты, нормированные к хондриту (Wakita et al., 1971).

Сланцы и песчаники имеют близкие содержания таких элементов как Th, La, Zr, Hf, которые не коррелируются с содержанием Al₂O₃ (рис. 22 a,б,в,г), но в то же время сланцы характеризуются преимущественно более высокими концентрациями Nb, Sc, V, Ni, Cr (рис. 22 д,е,ж,з). Повышенные концентрации Al₂O₃ и при этом более высокие содержания TiO₂, MgO, Nb, Sc, V, Ni, Cr в сланцах относительно песчаников (рис. 18 a,б; рис. 22 д,е,ж,з), в совокупности с разными направлениями трендов для сланцев и для песчаников на диаграмме TM – ФМ (рис. 18 г), могут свидетельствовать о накоплении титана, магния и отмеченных редких элементов с глинистой фракцией осадка в сланцах, которые, в свою очередь, являются производными аргиллитов или глинистых сланцев.

Рис. 22. Диаграммы корреляции содержаний Th, La, Zr, Hf, Nb, Sc, V, Cr+Ni с Al₂O₃ для песчаников и сланцев иликтинской свиты.

3.3.3. Результаты исследования возраста детритовых цирконов

С целью определения возраста детритовых цирконов из пород верхней части иликтинской свиты на участках Онгурен, Курга и Малая Иликта были отобраны геохронологические пробы.

На участке Онгурен была отобрана проба метапесчаника № 2135. В пробе песчаника было проанализировано 113 зерен детритового циркона, из которых 75 зерен характеризуются U–Pb возрастом со степенью дискордантности менее 10%. Основной возрастной пик фиксируется на отметке 1989 млн лет (30 % зерен), также значимый пик отмечается на отметке 2275 млн лет (22 % зерен), остальные небольшие пики маркируют отметки 2347, 2461, 2565 и 2887 млн лет (рис. 23 а).

На участке Малая Иликта была отобрана проба рассланцованного песчаника № 2205. В пробе песчаника было проанализировано 129 зерен детритового циркона, для 94 зерен были получены конкордантные значения возраста. В этой пробе при установлении порога дискордантности 10 % формируются пять основных возрастных пиков: 1973 млн лет (12 % зерен), 2052 млн лет (12 % зерен), 2172 млн лет (11 % зерен), 2286 млн лет (29 % зерен), 2880 млн лет (10 % зерен) и менее значимые пики на отметках 2783, 3007 и 3155 млн лет (рис. 23 б).

Цирконы из слабоизмененных песчаников на участке Курга были выделены из нескольких близких по составу небольших проб (№№ 0815–0823) и объединены между собой под номером 0815. Всего было проанализировано 88 зерен детритового циркона, для 45 зерен получены значения возраста с дискордантностью <10%. Наиболее значимые пики формируются на отметках 1955 млн лет (37%), 2160 млн лет (40%), более мелкие пики формируются на отметках 2215 млн лет, 2277 млн лет, 2493 млн лет, 2705 млн лет (рис. 23 в).

Рис. 23. Диаграммы с конкордиями (слева) и гистограммы и кривые относительной вероятности (справа) U-Pb возраста детритовых цирконов из песчаников иликтинской свиты

3.3.3.1. Морфология цирконов

Большинство наиболее древних зерен циркона возрастом 2843–2887 млн лет характеризуется наличием осцилляторной зональности, короткопризматическим субидиоморфным обликом и полуокатанными гранями. Среди цирконов этой группы изредка встречаются секториальные зерна, часто с серой или черной каймой (рис. 24).

Рис. 24. Катодолюминесцентные изображения зерен цирконов из песчаников иликтинской свиты. Цифрами указан ²⁰⁷Pb/²⁰⁶Pb возраст циркона (млн лет).

Цирконы возрастом 2461–2493 млн лет в большинстве случаев встречаются в виде обломков и являются незональными или обнаруживают слабовыраженную зональность, полуокатанные, существенно реже встречаются зерна с осцилляторной зональностью (рис. 24).

Зерна циркона и его обломки возрастом 2265–2277 млн лет характеризуются как зональным, так и незональным или секториальным внутренним строением (рис. 24). Все зерна этой возрастной группы по большей части слабоокатанные и имеют короткопризматический субидиоморфный облик.
Наиболее молодые цирконы с возрастом в диапазоне 1955–1993 млн лет, как правило, представлены полуокатанными или неокатанными субидиоморфными короткопризматическими зернами и обломками (рис. 24). Чаще всего для них характерно наличие осцилляторной зональности, что свидетельствует об их магматическом происхождении. Реже встречаются зерна или обломки с неявно выраженной зональностью или ее отсутствием, иногда с серыми незональными каймами, возможно, имеющие метаморфическое происхождение.

Судя по морфологическим особенностям изученных цирконов, можно заключить, что источники сноса для зерен с возрастом 1955–1993 и 2265–2277 млн лет располагались в непосредственной близости к бассейну осадконакопления пород верхней части иликтинской свиты, в то время как для цирконов остальных возрастных групп можно допускать и источники сноса, расположенные на некотором удалении от бассейна осадконакопления.

3.3.4. Геодинамические условия формирования и источники вещества

Терригенные породы верхней части иликтинской свиты на всех изученных участках представлены в разной степени метаморфизованными песчаниками и сланцами, вторичные преобразования которых были связаны с раннепалеозойскими коллизионными событиями, фиксирующими причленение Ольхонского террейна Центрально-Азиатского складчатого пояса к Сибирскому кратону (Donskaya et al., 2017). Признаки раннепротерозойского регионального метаморфизма в изученных разрезах терригенных пород отмечены не были, а среди терригенных пород на участках Тытери и Курга были зафиксированы практически неизмененные песчаники, для которых реконструируются псаммитовые и псефопсаммитовые структуры (рис. 17, а, б). Региональный метаморфизм с возрастом 1.95 млрд лет в Сарминском сегменте Акитканского орогенного пояса проявлен в породах нижележащей харгитуйской свиты (Савельева и др., 2019). На основании этих данных о возрасте регионального метаморфизма, а также с учетом возраста прорывающих породы иликтинской свиты гранитоидов (1.86–1.91 млрд

лет) (Бибикова и др., 1987; Донская и др., 2003; Базарова, 2011; Donskaya, Gladkochub, 2021) время накопления терригенных пород иликтинской свиты можно оценить в узком диапазоне 1.91-1.95 млрд лет. Полученные U-Pb геохронологические данные по возрасту зерен детритового циркона не противоречат этим выводам. Самые молодые зерна детритового циркона имеют возраст 1955–1989, а также 2052 млн лет (рис. 23). Эти цирконы обнаруживают признаки преимущественно магматических зерен с подчиненным количеством зерен метаморфического генезиса (рис. 24). С учетом погрешности определения возраста методом LA-ICP-MS (1-3 %), источниками этих цирконов могли быть гранитоиды кутимского (2019 ± 16 млн лет (Донская и др., 2013)) и чуйского (2020± 12 млн лет (Неймарк и др., 1998)) комплексов Чуйского сегмента Акитканского орогенного пояса, а также граниты Еловского массива (2018 ± 18 млн лет (Poller et al., 2005)) и гранитогнейсы (1985 ± 15 млн лет (Донская и др., 2016)) Голоустенского сегмента Акитканского орогенного пояса. Источниками цирконов, формирующими возрастной пик на отметке 2160 млн лет, вероятно, являются граниты с возрастом 2153 ± 11 млн лет (Донская и др., 2016), известные в Западном Прибайкалье в пределах Хомутского массива Голоустенского сегмента. Полученные возрастные пики в интервале 2265-2277 млн лет являются нетипичными для региона, поскольку интервал 2.2-2.4 млрд лет считается практически полностью амагматичным для Сибирского кратона (Donskaya, 2020), и предполагаемые источники терригенного материала с близким возрастом в настоящий момент неизвестны. Однако цирконы возрастом ~2.3 млрд лет в большом количестве встречаются в породах нижележащей харгитуйской свиты сарминской серии (см. обсуждение выше) и могли попасть в отложения иликтинской свиты В результате разрушения метаморфических пород харгитуйской свиты. Для цирконов с возрастом в интервале 2461–2493 млн лет в качестве потенциальных источников можно рассматривать гранитоиды нелюкинского комплекса с возрастом 2.4–2.5 млрд лет (Сальникова и др., 1997; Котов и др., 2004), распространенные в зоне сочленения Чара-Олекминского и Западно-Алданского блоков Алданского супертеррейна. Цирконы с возрастом в

74

интервале 2843–2887 млн лет, вероятно, поступали при размыве гранитоидов ТТГ серии с возрастом 2884 ± 12 млн лет Акитканского орогенного пояса (Donskaya et al., 2009) или из пород магматических комплексов, известных в пределах Анабарского супертеррейна (Ларичев и др., 2023). Таким образом, в качестве основных источников терригенного материала для пород иликтинской свиты можно рассматривать преимущественно магматические и метаморфические породы Акитканского орогенного пояса при некотором добавлении материала из пород прилегающих Алданского и Анабарского супертеррейнов.

Петрографические данные по слабоизмененным песчаникам иликтинской свиты показывают, что эти породы сложены обломками пород и минералов преимущественно полуокатанной, а иногда и неокатанной формы. Детритовый циркон в проанализированных песчаниках также в большинстве своем представлен полуокатанными или неокатанными зернами и обломками. Кроме того, все изученные песчаники характеризуются плохой степенью сортировки зерен и обилием обломков пород (от 9 до 30 %). Также для песчаников иликтинской свиты отмечаются низкие значения индекса химического выветривания CIA (Nesbitt, Young, 1982), варьирующиеся от 47 до 69, и повышенные индексы изменчивости состава ICV (Cox, Lowe, 1995), изменяющиеся от 0.91 до 1.95, что позволяет предполагать незрелые слабовыветрелые источники для этих пород (рис. 25). Петрографические и геохимические данные для песчаников иликтинской свиты свидетельствуют о низкой степени сортировки, слабой степени выветривания и небольшой дальности переноса обломочного материла, поступающего в область осадконакопления этих пород. Что касается сланцев, то для них характерны более высокие значения индекса CIA (66-73) и более низкие показатели ICV (0.95-1.1) по сравнению с песчаниками (рис. 25). Точки составов некоторых сланцев находятся в области слабовыветрелых пород, а часть – в переходной зоне между слабовыветрелыми и интенсивно выветрелыми породами на диаграмме ICV-CIA (рис. 25).

Рис. 25. Диаграмма в координатах CIA–ICV (Safonova et al., 2022) для песчаников и сланцев иликтинской свиты. Голубая область соответствует диапазону значений CIA для PAAS (Taylor, McLennan, 1985). Индекс химического изменения CIA = $(Al_2O_3/(Al_2O_3+CaO^*+Na_2O+K_2O))\times100$, где CaO* – содержание CaO только в силикатных минералах, приведен по (Nesbitt, Young, 1982), индекс изменчивости состава ICV = $(CaO+K_2O+Na_2O+Fe_2O^{3+}+MgO+MnO+TiO_2)/Al_2O_3$ (Cox, Lowe, 1995). Расчеты проводятся в мол. кол.

Петрографические и геохимические характеристики терригенных пород иликтинской свиты, а также данные по внутреннему строению зерен детритового циркона свидетельствуют об их образовании за счет разрушения магматических и метаморфических пород главным образом кислого состава. Среди обломочной массы в изученных терригенных породах преобладают кварц и полевые шпаты, а обломки пород в проанализированных песчаниках в основном представлены гранитоидами и кварцитами, что указывает преимущественно на кислый состав пород в области источника сноса. Присутствие таких акцессорных минералов, как циркон, титанит, апатит, турмалин, также свидетельствует о преобладании кислых пород в области сноса. Кроме того, источники кислого состава подтверждаются и на основании анализа состава возможных источников сноса для пород иликтинской свиты, выполненного с использованием содержаний и отношений тех элементов, которые не коррелируются с содержанием Al₂O₃, т. е. не связаны с глинистой фракцией осадка в сланцах и могут отражать состав источника, а именно с помощью таких элементов, как редкие земли, Zr, Hf, Th. В частности, отмечается наличие отрицательной европиевой аномалии на спектрах распределения редкоземельных элементов всех пород свиты, что свидетельствует в пользу кислых магматических пород в области источника сноса (рис. 20, 21). Расположение точек составов песчаников и сланцев на диаграмме La/Th–Hf (Floyd, Leveridge, 1987) также указывает на их образование за счет разрушения пород кислого состава (рис. 26 а). Кроме того, несмотря на то, что песчаники относительно сланцев характеризуются преимущественно более высокими значениями отношений Zr/Sc (5.6–29.7 против 3.2–8.0) и Th/Sc (0.5–4.3 против 0.3–0.7), как песчаники, так и сланцы располагаются на диаграмме Th/Sc–Zr/Sc (McLennan et al., 1993) вблизи точек состава магматических пород кислого состава и вдоль тренда, отражающего вариации состава источника (рис. 26 б).

Рис. 26. Диаграммы La/Th-Hf (Floyd, Leveridge, 1987) (a) и Th/Sc-Zr/Sc (McLennan et al., 1993) (б) для песчаников и сланцев иликтинской свиты.

Для установления геодинамической обстановки осадконакопления терригенных пород иликтинской свиты была использована диаграмма в координатах DF₁–DF₂ (Verma, Armstrong-Altrin, 2013) (рис. 27). На данной диаграмме большинство точек составов песчаников и сланцев попали в поля, характерные для пород, формирование которых имело место в условиях континентального рифта. Таким образом, полученные данные в совокупности с незрелым характером терригенных пород иликтинской свиты позволяют предполагать, что породы свиты могли накапливаться как молассоидные образования в бассейнах, связанных с процессами растяжения.

Рис. 27. Диаграмма DF₁–DF₂ (Verma, Armstrong-Altrin, 2013) для для песчаников и сланцев иликтинской свиты.

Для пород с содержанием $SiO_2 = 63-95$ мас. %:

 $DF_1 = (-0.263 \cdot \ln(TiO_2/SiO_2)) + (0.604 \cdot \ln(Al_2O_3/SiO_2)) + (-1.725 \cdot \ln(Fe_2O_{3t}/SiO_2)) + (-1.72 \cdot \ln(Fe_2O_{3$

 $(0.660 \bullet ln(MnO/SiO_2)) + (2.191 \bullet ln(MgO/SiO_2)) + (0.144 \bullet ln(CaO/SiO_2)) + (-1.304 \bullet ln(Na_2O/SiO_2)) + (-1.304 \bullet ln(Na_2O/SO_2)) + (-$

 $(0.054 \bullet ln(K_2O/SiO_2)) + (-0.330 \bullet ln(P_2O_5/SiO_2)) + 1.588$

 $DF_2 = (-1.196 \bullet ln(TiO_2/SiO_2)) + (1.064 \bullet ln(Al_2O_3/SiO_2)) + (0.303 \bullet ln(Fe_2O_{3t}/SiO_2)) + (0.303 \bullet ln(Fe_2O_{3t}/SiO_2))$

 $(0.436 \bullet ln(MnO/SiO_2)) + (0.838 \bullet ln(MgO/SiO_2)) + (-0.407 \bullet ln(CaO/SiO_2)) + (1.021 \bullet ln(Na_2O/SiO_2)) + (-0.407 \bullet ln(CaO/SiO_2)) + (-0.407 \bullet ln(CaO/SiO$

 $1.706 \cdot \ln(K_2O/SiO_2)) + (-0.126 \cdot \ln(P_2O_5/SiO_2)) - 1.068.$

Для пород с содержанием $SiO_2 = 35-63$ мас. %:

 $DF_1 = (0.608 \bullet \ln(TiO_2/SiO_2)) + (-1.854 \bullet \ln(Al_2O_3/SiO_2)) + (0.299 \bullet \ln(Fe_2O_{3t}/SiO_2)) + (-1.854 \bullet \ln(Al_2O_3/SiO_2)) + (-1.854 \bullet \ln(Al_2O_3/SiO_2))$

 $0.550 \bullet ln(MnO/SiO_2)) + (0.120 \bullet ln(MgO/SiO_2)) + (0.194 \bullet ln(CaO/SiO_2)) + (-1.510 \bullet ln(Na_2O/SiO_2)) + (-1.510 \bullet ln(Na_2O/SO_2)) + (-1.500 \bullet ln(Na_2O/SO_2)) + (-1.500 \bullet ln(Na_2O/SO_2)) + (-1.$

 $(1.941 \cdot \ln(K_2O/SiO_2)) + (0.003 \cdot \ln(P_2O_5/SiO_2)) - 0.294.$

 $DF_2 = (-0.554 \bullet ln(TiO_2/SiO_2)) + (-0.995 \bullet ln(Al_2O_3/SiO_2)) + (1.765 \bullet ln(Fe_2O_{3t}/SiO_2)) + (-0.995 \bullet ln(Al_2O_3/SiO_2)) + (-0.995 \bullet ln(Al_2O_3/S$

 $1.391 \bullet ln(MnO/SiO_2)) + (-1.034 \bullet ln(MgO/SiO_2)) + (0.225 \bullet ln(CaO/SiO_2)) + (0.713 \bullet ln(Na_2O/SiO_2)) + (0.713 \bullet ln(Na_2O/SO_2)) + (0.713 \bullet ln(Na_2O$

 $(0.330 \cdot \ln(K_2O/SiO_2)) + (0.637 \cdot \ln(P_2O_5/SiO_2)) - 3.631.$

3.4. Анайская свита

Породы анайской свиты были изучены посредствам проведения петрографических, геохимических и геохронологических исследований образца 1813, предоставленного автору сотрудником лаборатории палеогеодинамики ИЗК СО РАН д.г.-м.н. А.М. Мазукабзовым, который совместно с коллегами проводил геологические и геолого-структурные исследования в пределах стратотипической для анайской свиты местности – Анайских гольцов – в 80-е годы прошлого века. Также в основу данного раздела легли данные из опубликованных исследований, посвященных породам анайской свиты.

В районе Анайских гольцов разрез анайской свиты представлен наиболее полно и имеет трехчленное строение (рис. 28 а, б). Нижнюю часть слагают конгломераты, гравелиты, полимиктовые песчаники с прослоями пестроцветных глинистых и алевритовых сланцев, а также кварциты. Средняя часть представлена хлоритоид-серицит-пирофиллитовыми, хлоритоид-серицитовыми сланцами И кварцитами, среди которых встречаются субсогласные тела долеритов небольшой мощности. Верхняя часть разреза отличается преобладанием кварцитов с редкими прослоями хлорит-серицитовых сланцев (рис. 28 б) (Федоровский, 1985). Все породы интрудированы многочисленными силлами и дайками долеритов (рис. 3), возраст которых на данной территории не установлен, но по аналогии с дайками долеритов Прибайкальского дайкового поля Западного Прибайкалья их возраст может оцениваться как неопротерозойский (Гладкочуб и др., 2007; Донская и др., 2023; Ernst et al., 2023). По зонам тектонических нарушений анайская свита контактирует с позднерифейскими породами байкальской серии. По мнению В.К. Александрова с соавторами (Александров и др., 1989), подобное геологическое строение обусловлено тем, что Анайская структура представляет собой тектонических останец, надвинутый на породы байкальской серии, которые погружаются под анайскую свиту и находятся в ее автохтоне. На северной оконечности Анайской структуры (в ее центриклинальном замыкании) обнажены породы акитканской серии, которые залегают гипсометрически выше пород

байкальской серии, но ниже отложений анайской свиты. В восточной части анализируемого участка широко распространены породы иликтинской свиты, которые также интрудированы дайками долеритов и гранитоидами кочериковского комплекса. Детальные исследования были проведены по образцу породы, отобранному из средней части разреза анайской свиты.

Рис. 28. Схема геологического строения Анайских гольцов (Александров и др., 1989) (a) и стратиграфическая колонка анайской свиты (по данным (Федоровский, 1985)) (б).

(а): 1 – четвертичные отложения; 2–4 – байкальская серия: 2 – качергатская свита, 3 – улунтуйская свита, 4 – голоустенская свита; 5 – силлы и дайки долеритов; 6 – анайская свита: а – нижняя подсвита (конгломераты, гравелиты, песчаники полимиктовые, кварциты), б – средняя подсвита (хлоритоид-серицитовые сланцы и кварциты), в – верхняя подсвита (кварциты с прослоями хлоритоидных сланцев); 7 – акитканская серия; 8 – гранитоиды кочериковского комплекса; 9 – иликтинская свита; 10 – надвиги; 11 – разломы; 12 – точка отбора пробы 1813.

(б): 1 – гравелиты и конгломераты; 2 – песчаники кварцевые и полимиктовые; 3 – кварциты; 4 – хлоритоид-серицитовые сланцы; 5 – долериты; 6 – границы между разностями пород внутри подсвит; 7 – точка отбора пробы 1813.

3.4.1. Петрографическая характеристика

Проведенные петрографические исследования показали, что отобранный образец анайской свиты представляет собой тонкозернистый кварц-серицитхлоритовый сланец (рис. 29 а, б).

Рис. 28. Фото образца 1813 (а), микрофотография шлифа в скрещенных николях (б).

Основная масса породы сложена мелкими чешуйками серицита (31 %) и хлорита (50 %), в расположении которых прослеживается однонаправленная ориентировка, за счет чего порода характеризуется слабо ориентированной текстурой. В породе также отмечается кварц (17 %) в виде мелких зерен с волнистым погасанием, а также в виде ксеноморфных выделений, по которым развиты чешуйки хлорита и серицита. В виде мелкой точечной вкрапленности присутствует рудный минерал (2 %). В качестве акцессорного минерала отмечается циркон. Вторичные изменения выражены интенсивным развитием гидроокислов железа.

Согласно расчету нормативного минерального состава с использованием программы MINLITH (Rosen et al., 2000) установлено, что в неметаморфизованном

состоянии порода состояла из иллита (52 %), кварца (25 %), хлорита (18 %), а также небольшого количества полевых шпатов (5 %).

3.4.2. Геохимическая характеристика

Кварц-серицит-хлоритовый сланец характеризуется содержанием SiO₂ = 57.5 мас. % и обогащен глиноземом (Al₂O₃ = 21.8 мас. %) (прил. 3). Согласно классификации А.Н. Неелова (Неелов, 1980), используемой для метаморфизованных осадочных пород, порода отвечает по составу пелитовому аргиллиту. Рассчитанные значения $log(SiO_2/Al_2O_3) = 0.42$ и $log(Fe_2O_3/K_2O) = -0.37$ позволяют также классифицировать исследуемую породу как глинистый сланец (Herron, 1988).

Анализируемый сланец характеризуется фракционированным спектром распределения редкоземельных элементов ((La/Yb)_n = 12) и хорошо выраженной отрицательной европиевой аномалией (Eu/Eu* = 0.53) (прил. 3, рис. 30). Индикаторные значения отношений La/Sc = 4.64 и Th/Co = 1.31 (Cullers, 2002) в совокупности с отрицательной европиевой аномалией позволяют предполагать, что основным источником сноса для протолита кварц-серицит-хлоритового сланца были магматические породы кислого состава.

Рис. 30. Спектр распределения редкоземельных элементов для кварц-серицит-хлоритового сланца анайской свиты, нормированный на хондрит (Wakita et. al., 1971)

3.4.3. Результаты исследования возраста детритовых цирконов

Геохронологические исследования проводились по 77 зернам детритового циркона, выделенного из кварц-серицит-хлоритового сланца (образец 1813). Значения с дискордантностью <10% были получены для 53 зерен (прил. 5). Проведенные измерения показали, что для большинства зерен детритового циркона (44 зерна) возраст соответствует диапазону 1.88–1.84 млрд лет, а основной пик фиксируется на отметке в 1.86 млрд лет. Возраст наиболее древнего зерна циркона составляет 2.73 млрд лет, а наиболее молодого – 1.80 млрд лет (рис. 30).

Рис. 31. Гистограмма и кривая относительной вероятности возраста детритовых цирконов из кварц-серицит-хлоритового сланца анайской свиты.

3.4.4. Геодинамические условия формирования и источники вещества

Полученные оценки возраста детритовых цирконов из кварц-серицитхлоритового сланца анайской свиты свидетельствуют о том, что породы анайской свиты накапливались после формирования пород Южно-Сибирского постколлизионного магматического пояса, т.е. позднее временной отметки 1.84 млрд лет, а богатые цирконом гранитоиды и кислые вулканиты, входящие в его состав, вероятно, являлись основными поставщиками терригенного материала в бассейны седиментации, что подтвержается результатами геохимических исследований. Новые надежные геохронологические данные противоречат ранее высказанной гипотезе В.С. Федоровского (Федоровский, 1989) о том, что породы анайской свиты могут быть отнесены к раннепротерозойской сарминской серии, образование которой имело место до начала формирования Южно-Сибирского постколлизионного магматического пояса. Кроме этого, значения возраста зерен детритового циркона в породах анайской свиты дают основание пересмотреть выводы Л.И Салопа с соавторами (Салоп и др., 1974) о том, что анайская свита и акитканская серия могут быть фациальными аналогами, а также заключения В.К. Головенка (Головенок, 1977), что нижние части разреза анайской свиты соответствуют чайской свите акитканской серии, так как возраст всех вулканических пород акитканской серии составляет 1.88–1.84 млрд лет (Ларин и др., 2003; Донская и др., 2007, 2008; Donskaya, Gladkochub, 2021). Таким образом, полученные данные по возрасту детритовых цирконов в породах анайской свиты подтвердили стратиграфические схемы Западного Прибайкалья, согласно которым анайская свита располагается в разрезе выше раннепротерозойских образований сарминской и акитканской серий (Мац, 1983; Устинов, Рыбаков, 1983; Александров и др., 1989; Галимова и др., 2009).

3.5. Обсуждение результатов и выводы

Харгитуйская свита. Проведенные исследования показали, что в пределах единой харгитуйской свиты были объединены три разновозрастные толщи пород.

Породы наиболее древней толщи (первой группы), выделенной в составе харгитуйской свиты, представлены амфиболовыми и лейкократовыми гнейсами. Протолитами лейкократовых гнейсов являлись полимиктовые песчаники или граувакки. Незрелый характер терригенных образований указывает на то, что, вероятнее всего, сформированы эти породы были непосредственно на кристаллическом основании Сарминского блока, выполненного гранитоидами ТТГ серии с возрастом 2.88 млрд лет (Donskaya et al., 2009), которые также, согласно полученным изотопно-геохимическим ланным. являлись основными поставщиками материала при накоплении пород первой группы. Наиболее молодая популяция зерен детритового циркона в этих породах имеет возраст около 2.7 млрд лет, что указывает на то, что накопление этих пород началось после этой временной отметки. Нижнюю границу осадконакопления протолитов лейкократовых гнейсов провести достаточно затруднительно, однако, поскольку в исследуемой пробе не встречаются зерна циркона с возрастом в интервале 2.4–2.5 млрд лет и моложе, которые отмечаются в других исследованных пробах, как харгитуйской, так и иликтинской свиты. С высокой долей вероятности можно предположить, что к временной отметке в 2.5 млрд лет протолиты гнейсов уже могли быть сформированы. Таким образом, накопление пород первой группы можно рассматривать на временном интервале 2.7–2.5 млрд лет.

Породы второй группы представлены кварцитами, слюдисто-кварцевыми плагиоклаз-слюдисто-кварцевыми сланцами И сланцами, которые В неметаморфизованном собой состоянии представляли преимущественно кварцевые песчаники и, в меньшей степени, полимиктовые песчаники и алевролиты. Относительно зрелый характер пород второй группы позволяет предполагать, что осадконакопление этих пород происходило в спокойной геодинамической обстановке. Возраст наиболее молодых зерен детритового

85

циркона в этих породах, в совокупности со временем метаморфических преобразований, в которые были вовлечены породы второй группы, показывает, что накопление протолитов кварцитов и сланцев происходило на этапе 2.15–1.95 млрд лет назад за счет разрушения магматических пород преимущественно кислого состава с небольшой долей добавления материала из пород андезитового состава в пределах Сарминского блока до начала коллизионных событий, приведших к формированию Акитканского орогена, как единой структуры.

Породы третьей группы представлены также кварцитами и слюдистокварцевыми сланцами. Протолитами пород третьей группы являлись зрелые, хорошо отсортированные кварцевые терригенные породы. Зерна детритового циркона из этих пород формируют главный возрастной пик на отметках в интервале 1835–1865 млн лет, что однозначно указывает на то, что они накапливались позднее внедрения пород Южно-Сибирского постколлизионного магматического пояса с возрастом 1.84–1.88 млрд лет, которые являлись основными источниками материала при накоплении пород третьей группы. Возраст самых молодых зерен детритового циркона в породах третьей группы составляет 1675 млн лет. Исследуемые метатерригенные породы третьей группы прорываются неопротерозойскими дайками долеритов с возрастом около 0.72 млрд лет (Гладкочуб и др., 2007; Ernst et al., 2023) и ни на одном участке не прорываются дайками карбонатитов с возрастом 1.00 млрд лет (Савельева и др., 2016), что позволяет определить время формирования этих пород временным интервалом 1.00–0.72 млрд лет, т.е. уже после завершения формирования Акитканского орогенного пояса как единой структуры, входящей в состав Сибирского кратона. В пользу данного временного интервала осадконакопления говорит также зрелый характер протолитов пород третьей группы, который указывает на то, что эти породы, наиболее вероятно, накапливались в бассейнах внутриконтинентального растяжения, которые начали формироваться в раннем неопротерозое.

Иликтинская свита. Терригенные породы верхней части иликтинской свиты на всех изученных участках представлены в разной степени динамометаморфизованными песчаниками и сланцами, вторичные преобразования

которых наиболее вероятно связаны с раннепалеозойскими коллизионными событиями, фиксирующими причленение Ольхонского террейна ЦАСП к кратону (Donskaya et 2017). Сибирскому al., Признаки регионального метаморфизма, проявившегося в породах нижележащей харгитуйской свиты на отметке 1.95 млрд лет (Савельева и др., 2019), в изученных разрезах терригенных пород иликтинской свиты отмечены не были, а среди терригенных пород на некоторых участках были зафиксированы практически неизмененные песчаники. На основании данных о возрасте проявления регионального метаморфизма, а также с учетом возраста прорывающих породы иликтинской свиты гранитоидов (1.91-1.86 млрд лет) (Бибикова и др., 1987; Донская и др., 2003; Базарова, 2011; Donskaya, Gladkochub, 2021), время накопления терригенных пород верхней части иликтинской свиты можно оценить в узком диапазоне 1.95-1.91 млрд лет. Полученные U-Pb геохронологические данные по возрасту детритовых цирконов не противоречат этим выводам. На основании всех проведенных исследований можно сделать вывод, что накопление терригенных пород иликтинской свиты сарминской серии происходило в пределах осадочных бассейнов, сформированных после завершения коллизионных событий и образования структуры Акитканского орогенного пояса, а собственно породы иликтинской свиты можно рассматривать как индикаторы проявления орогенных событий, которые отражают эволюцию Акитканского орогенного сооружения, сформированного в результате реализации коллизионных процессов на временном интервале 1.95-2.00 млрд лет после объединения Анабарского и Алданского супертеррейнов. Дальнейшая эволюция Акитканского орогена фиксируется внедрением гранитоидов возрастом около 1.91 млрд лет и магматических пород Южно-Сибирского постколлизионного магматического пояса возрастом 1.85–1.88 млрд лет (рис. 32).

Рис. 32. Схема геодинамической эволюции Сарминского сегмента Акитканского орогенного пояса на временном интервале 1.98–1.86 млрд лет.

Анайская свита. Проведенные исследования показали, что породы анайской свиты накапливались после формирования пород Южно-Сибирского постколлизионного магматического пояса с возрастом 1.88–1.84 млрд лет, что не позволяет коррелировать отложения этой свиты с породами первых друх групп, относимых к харгитуйской свите сарминской серии, и с терригенными породами иликтинской свиты. Среди изученных пород, относимых ранее к сарминской серии, образования анайской свиты оказались наиболее близки по возрасту и геохимическим характеристикам кварцитам и слюдисто-кварцевым сланцам третьей группы, относимой к харгитуйской свите. Таким образом, полученные данные по возрасту детритовых цирконов в породах анайской свиты и породах

третьей группы, выделяемой ранее в харгитуйской свите, свидетельствуют о том, что эти две толщи должны располагаться в разрезе Западного Прибайкалья выше раннепротерозойских образований сарминской и акитканской серий.

Также, как и породы третьей группы, относимые к харгитуйской свите, отложения анайской свиты прорываются дайками долеритов неопротерозойского возраста (725-715 млн лет) (Гладкочуб и др., 2007; Ernst et al., 2023), что не позволяет коррелировать эти отложения с терригенными породами нуганской свиты и голоустенской свиты байкальской серии Западного Прибайкалья, с которыми они имеют схожие возрастные пики детритовых цирконов (рис. 33), но которые нигде на площади их распространения не прорываются неопрозойскими дайками долеритов (Мазукабзов и др., 2018; Гладкочуб и др., 2013; Gladkochub et al., 2019b). Таким образом, нуганская и голоустенская свиты формировались позднее внедрения неопротерозойских даек, и не позволяет соотносить породы анайской свиты с отложениями нуганской и голоустенской свит. По составу пород, геологическому положению и основным пикам возраста детритовых цирконов (рис. 33) анайская свита обнаруживает сходство с породами пурпольской свиты, которые распространены в Патомской зоне Саяно-Байкало-Патомского пояса (Митрифанова и др., 2012; Powerman et. al., 2015). Пурпольская свита, подобно анайской свите, имеет трехчленное строение. В ее нижней части выделяются гравелиты, мелкогалечные конгломераты и кварцевые песчаники, в средней части развиты высокоглиноземистые (хлоритоидные) сланцы, а завершают разрез кварцевые песчаники с прослоями глиноземистых сланцев (Митрифанова и др., 2012). Породы пурпольской свиты рассматриваются как переотложенные продукты химического выветривания, формировавшиеся в рифтогенных бассейнах в неопротерозое (тонийское время) после длительного периода высоко стояния кратона (Советов, 2022).

Рис. 33. Корреляция возрастных спектров детритовых цирконов пород анайской, нуганской (Мазукабзов и др., 2018), голоустенской (Гладкочуб и др., 2013) и пурпольской (Powerman et al., 2015) свит, а также возрастных спектров цирконов магматических и метаморфических комплекса южной части Сибирского кратона (Rojas-Agramonte et. al. 2011).

Также, H.H. Митрофанова с соавторами (Митрифанова и др., 2012) указывают, что отложения пурпольской свиты согласно перекрываются породами медвежевской свиты, для вулканитов данным А.В. Шапилло с которой ПО соавторами (Шацилло И 2020) др., допускается возраст ~720 млн лет. Если опираться на эти данные, то при попытке корреляции пород анайской свиты С пурпольской свиты, породами процесс накопления отложений обеих свит, повидимому, имел место В раннем

неопротерозое. Также, необходимо отметить, что на площади распространения анайской свиты не зафиксировано прорывания её пород дайками карбонатитов с возрастом 1.00 млрд лет (Савельева и др., 2016). Таким образом, основываясь на схожести литологического состава и степени зрелости пород анайской свиты с породами третьей группы, выделенной в составе харгитуйской свиты, представляется наиболее вероятным рассматривать формирование пород третьей группы и пород анайской свиты одновременно в пределах одного или нескольких внутриконтинентальных бассейнов на временном интервале 1.00–0.72 млрд лет.

Глава 4. Модель геодинамической эволюции центральной части Байкальского выступа фундамента Сибирской платформы

Обобщение новых результатов и ранее опубликованных геохронологических данных о возрасте пород Сарминского сегмента Акитканского орогенного пояса (центральной части Байкальского выступа фундамента Сибирской платформы) позволяют обосновать основные этапы эволюции этой структуры (рис. 34).

Рис. 34. Схема основных этапов эволюции Сарминского сегмента Акитканского орогенного пояса Сибирского кратона (центральная часть Байкальского выступа фундамента Сибирской платформы).

На мезоархейском этапе (2.9 млрд лет) были сформированы гранитоиды ТТГ серии (Donskaya et al., 2009), которые, вероятно, представляли собой

кристаллическое основание Сарминского сегмента, являющегося на тот момент отдельным тектоническим блоком (Сарминский блок), на котором в интервале 2.7– 2.5 млрд лет, преимущественно за счет разрушения гранитоидов ТТГ серии, накапливались полимиктовые песчаники и граувакки, представляющие собой протолиты лейкократовых гнейсов первой группы.

Далее на временном этапе 2.15–1.95 млрд лет назад происходило накопление зрелых терригенных пород, относимых ко второй группе, которые в составе харгитуйской свиты сарминской серии представлены кварцитами, слюдистокварцевыми и плагиоклаз-слюдисто-кварцевыми сланцами. Формирование этих пород происходило также в пределах отдельного на тот момент Сарминского блока.

Немного позднее, но в пределах этого же временного интервала (2.02–2.00) лет) вблизи архейского Анабарского супертеррейна млрд происходит формирование геодинамической системы активной континентальной окраины, обусловленной субдукцией океанической коры раннепротерозойского океана под этот супертеррейн. В пределах Акитканского орогенного пояса образования активной континентальной окраины фиксируются в пределах Чуйского и Голоустенского сегментов (Донская и др., 2016; Donskaya, 2020). В пределах Сарминского сегмента комплексов активной континентальной окраины не процессы субдукции коллизией Анабарского и Завершились отмечается. Алданского супертеррейнов и формированием Акитканского орогенного пояса, в структуре которого были объединены породы Сарминского, Голоустенского и Чуйского блоков. Этот крупномасштабный процесс маркируется проявлением регионального метаморфизма на этапе 1.98-1.95 млрд (Донская и др., 2016; Савельева и др., 2019; Donskaya, 2020), и, непосредственно, в породах харгитуйской свиты, распространенных к северу от пос. Онгурен, фиксируется на временной отметке 1.95 млрд лет (Савельева и др., 2019).

После окончательного становления Акитканского орогенного пояса и завершения процессов коллизии произошел коллапс Акитканского орогена, и в пределах Сарминского сегмента начали формироваться внутриконтинентальные

бассейны, в которых накапливались молассоидные отложения иликтинской свиты (1.95-1.91 млрд лет) (Ефремова и др., 2024б). Процессы коллапса орогена завершились постколлизионным растяжением И привели К проявлению масштабного гранитоидного магматизма на временном интервале 1.88-1.84 млрд лет в пределах Южно-Сибирского постколлизионного магматического пояса, который прослеживается вдоль всей южной окраины Сибирского кратона (Ларин и др., 2003; Диденко и др., 2003; Donskaya, 2020; Donskaya, Gladkochub, 2021). В пределах Сарминского сегмента к породам Южно-Сибирского постколлизионного магматического пояса относятся кислые вулканиты акитканской серии (1.88–1.84 млрд лет (Ларин и др., 2003; Донская и др., 2008)), перекрывающие раннепротерозойские образования сарминской серии, а также гранитоиды приморского и ирельского комплексов (1.86 млрд лет (Донская и др., 2003; Poller et al., 2005)), которые интрудируют породы двух наиболее древних групп, относимых к харгитуйской свите, и породы иликтинской свиты. Финальным этапом раннепротерозойской эволюции Сарминского сегмента и всего Акитканского орогенного пояса является внедрение даек долеритов чайского комплекса с возрастом 1.75 млрд лет (Gladkochub et al., 2010b, 2019), которые прорывают породы Сарминского и Чуйского сегментов.

После завершения становления структуры Сибирского кратона, согласно (Gladkochub et al., 2010а), в пределах южной окраины Сибирского кратона фиксируется длительный перерыв в магматической активности и, как следствие, период геодинамического покоя и высокого стояния суши. В пределах Сарминского сегмента Акитканского орогенного пояса этот перерыв отмечается в период от 1.75 до 1.00 млрд лет. Перерыв в тектономагматической активности в этом временном интервале связывается с тем, что южная окраина Сибири в рассматриваемый период времени занимала внутреннее положение в пределах существовавших в то время суперконтинентов Колумбии, а затем и Родинии (Gladkochub et al., 2010a; Zhang et al., 2012; Pisarevsky et al., 2021; Li et al., 2023), а отсутствие мезопротерозойских осадочных комплексов связано с активными процессами эрозии. В начале неопротерозоя начинают проявляться процессы

93

внутриконтинентального растяжения, которые в пределах Сарминского сегмента проявились приблизительно на отметке в 1 млрд лет, что обосновывается внедрением даек карбонатитов этого возраста (Савельева и др., 2016). С началом процессов растяжения происходит постепенное опускание южной окраины Сибирского кратона и начинают формироваться внутриконтинентальные бассейны. Вероятно, именно с началом этого периода связано накопление зрелых осадков анайской свиты (Ефремова и др., 2023) и кварцитов и сланцев третьей группы на временном интервале 1.00–0.72 млрд лет.

К концу тония – началу криогения процессы растяжения становятся более широко проявленными в пределах всей южной части Сибирского кратона и фиксируются внедрением роев даек долеритов (Иркутская крупная магматическая провинция) с возрастом 720–715 млн лет, в том числе и в пределах Сарминского сегмента Акитканского орогенного пояса (Гладкочуб и др., 2007; Донская и др., 2023; Ernst et al., 2016, 2023). В это же время начинают формироваться рифтовые бассейны, в том числе в пределах Сарминского сегмента начинают накапливаться терригенные осадки нуганской свиты (Мазукабзов и др., 2018). Масштабные процессы внутриконтинентального растяжения привели к отделению Сибирского кратона от суперконтинента Родиния и к открытию Палеоазиатского океана (Gladkochub et al., 2019). Открытие Палеоазиатского океана на временном интервале 710-650 млн лет привело к формированию пассивной континентальной окраины вдоль южного края Сибирского кратона, индикаторами которой являются породы нижней части байкальской серии, широко распространенные в пределах сарминского сегмента Байкальского выступа (Gladkochub et al., 2019). В венде пассивная континентальная окраина сменяется форландовыми бассейнами, в которых накапливались породы верхней части байкальского серии (Gladkochub et al., 2019).

ЗАКЛЮЧЕНИЕ

В ходе проведения данного исследования впервые были получены комплексные петрографические, геохимические и геохронологические данные для пород харгитуйской, иликтинской и анайской свит Сарминского сегмента Акитканского орогенного пояса (Байкальский выступ фундамента Сибирской платформы) с использованием современных аналитических методов. Полученные данные дали возможность охарактеризовать состав, время формирования и условия осадконакопления пород этих свит. Результаты проведенного исследования позволили восполнить «пробелы» в истории геодинамической эволюции Сарминского сегмента Акитканского орогенного пояса, а с использованием уже известных опубликованных данных была предложена модель геодинамической эволюции центральной части Байкальского выступа фундамента Сибирской платформы в протерозойское время.

Наиболее важные результаты:

1. Выявлено и обосновано, что в единую харгитуйскую свиту сарминской были объединены разновозрастные серии три толщи пород, формирование которых происходило на абсолютно разных этапах эволюции Сарминского сегмента. Формирование наиболее древних пород, изученных в составе харгитуйской свиты, происходило на временном интервале 2.7–2.5 млрд лет назад, что обосновывается возрастом наиболее молодой популяции обломочного циркона и отсутствием популяций цирконов с возрастом 2.5 млрд лет и моложе, распространенных в других исследованных породах сарминской серии. Накопление кварцитов и сланцев второй обособленной группы пород происходило на этапе 2.15–1.95 млрд лет назад. Нижняя граница осадконакопления этих пород подтверждается возрастом наиболее молодых зерен детритового циркона, а верхняя граница проводится в соответствии с установленным возрастом метаморфизма, в который эти породы были вовлечены 1.95 млрд лет назад. Формирование наиболее

молодой – третьей – группы пород, представленной также кварцитами и сланцами, происходило на временном интервале 1.00–0.72 млрд лет. Полученные данные по возрасту зерен детритового циркона из этих пород позволили установить, что накопление этих пород началось после временной отметки в 1.7 млрд лет, а совокупность геологических данных, свидетельствующих о том, что породы третьей группы не интрудированы дайками карбонатитов с возрастом 1.00 млрд лет и прорываются дайками долеритов с возрастом 0.72 млрд лет, позволила сузить интервал осадконакопления до тонийского времени.

2. Изученные разрезы иликтинской свиты сарминской серии сложены преимущественно песчаниками с прослоями сланцев. Петрографические и петрохимические характеристики позволяют рассматривать песчаники иликтинской свиты как полимиктовые и граувакковые песчаники, а сланцы как граувакковые алевролиты и алевропелитовые аргиллиты. Установлено, что породы иликтинской свиты не были подвержены раннепротерозойскому региональному метаморфизму, а вторичные изменения в породах отражают в разной степени проявленную метаморфическую переработку, связанную с раннепалеозойскими событиями. Ha коллизионными основании данных 0 возрасте регионального метаморфизма, а также с учетом возраста прорывающих породы иликтинской свиты гранитоидов, время накопления иликтинской свиты можно оценить в узком диапазоне 1.95—1.91 млрд лет. Полученные данные по возрасту детритовых цирконов из песчаников иликтинской свиты не противоречат сделанным выводам, поскольку самые молодые зерна детритового циркона имеют возраст в интервале 1.99—1.95 млрд лет. В результате проведенных исследований было установлено, что основными источниками обломочного материала для терригенных пород иликтинской свиты могли являться кислые магматические И метаморфические породы раннепротерозойского Акитканского орогенного пояса при некотором добавлении материала из пород 96

Анабарского и Алданского супертеррейнов. Анализ геодинамических условий осадконакопления в совокупности с петрографическими и геохимическими характеристиками пород позволили сделать вывод, что породы иликтинской свиты сарминской серии могли накапливаться как молассоидные образования в осадочных бассейнах, сформированных после образования Акитканского орогенного сооружения.

- 3. Установлено, что породы анайской свиты не могут рассматриваться в составе раннепротерозойской сарминской серии, поскольку возраст основной популяции зерен детритового циркона составляет 1.86 млрд лет, что указывает на формирование этих пород после внедрения пород Южно-Сибирского постколлизионного магматического пояса, а также позволяет рассматривать породы этого пояса, как основные источники обломочного материала для терригенных пород анайской свиты. На основании геологического положения, состава пород и геологических корреляций установлено, что накопление высоко зрелых пород анайской свиты происходило одновременно с породами третьей группы, выделенной в составе харгитуйской свиты, на временном интервале 1.00–0.72 млрд лет во внутриконтинентальных бассейнах.
- 4. Результаты проведенных исследований позволяют охарактеризовать важные этапы эволюции Сарминского сегмента Акитканского орогенного пояса. Около 2.9 млрд лет назад происходило образование архейского блока, далее, на этапе 2.7–2.5 млрд лет, имело место накопление первых незрелых осадочных толщ на архейском основании. Временной интервал 2.15 - 1.95млрд лет характеризуется накоплением зрелых пород раннепротерозойского чехла, которые на этапе 1.98–1.95 млрд лет были вовлечены в процессы регионального метаморфизма, связанного с формированием Акитканского орогенного пояса, как единой структуры. Период 1.95–1.91 млрд лет связан с накоплением терригенных толщ в обстановке растяжения, обусловленного коллапсом Акитканского орогена. На временном интервале 1.88–1.84 млрд лет процессы

97

широкомасштабному растяжения привели проявлению К которого пределах постколлизионного магматизма, после В рассматриваемой территории отмечается перерыв длительный В осадконакоплении, и только на этапе 1.00-0.72 млрд лет происходит накопление зрелых терригенных толщ во внутриконтинентальных бассейнах.

Список литературы

1. Александров В.К., Мазукабзов А.М., Бойко Ю.И., Богарев Г.А., Калинина В.И. Анайская структура Западного Прибайкалья. Известия АН СССР, серия геологическая, 1989. – № 6. – С. 71–79.

 Аносов В.С. Геологическая карта СССР масштаба 1:200 000. Серия Прибайкальская. Лист N-48-XXXIV. Объяснительная записка. – М.: Издательство «Недра», 1967. – 76 с.

 Базарова Е. П. Петрология и геохимия раннепротерозойский гранитов приморского комплекса. Автореферат диссертации. ИЗК СО РАН. Иркутск, 2011. – 24 с.

4. Бибикова Е.В., Кориковский С.П., Кирнозова Т.И., Сумин Л.В., Аракелянц М.М., Федоровский В.С., Петрова З.И. Определение возраста пород Байкало-Витимского зеленокаменного пояса изотопногеохронологическими методами. Изотопное датирование процессов метаморфизма и метасоматоза, М.: Наука, 1987. – С. 154–164.

5. Галимова Т.Ф., Пермяков С.А., Бобровский В.Т., Пашкова А.Г. и др. Государственная геологическая карта Российской федерации. Масштаб 1:1 000 000 (третье поколение). Лист N-48 (Иркутск). Объяснительная записка, 2009. – 490 с.

6. Гладкочуб Д.П., Донская Т.В., Мазукабзов А.М. Феномен аномально быстрого накопления отложений удоканской серии и формирования уникального Удоканского медного месторождения (Алданский щит, Сибирский кратон). Геодинамика и тектонофизика, 2020. – вып. 1. – № 4. – С. 664-671.

7. Гладкочуб Д.П., Донская Т.В., Ванг К.-Л., В.С. Федоровский, А.М. Мазукабзов. Оценка возраста отложений сарминской серии Западного Прибайкалья по результатам изотопного (LA-ICP-MS) датирования детритовых цирконов. Изотопное датирование геологических процессов: новые результаты, подходы и перспективы. Материалы VI Российской конференции по изотопной геохронологии. 2-5 июня 2015 г., Санкт-Петербург, ИГГД РАН. – СПб: Sprinter, 2015. – С. 62-64.

99

Кладкочуб Д.П., Донская Т.В., Эрнст Р.Е., Седерлунд У., Мазукабзов А.М., Шохонова М.Н. Расширение ареала Тимптонской крупной магматической провинции (~1.75 млрд лет) Сибирского кратона. Геодинамика и тектонофизика, 2019. – Т. 10. – № 4. – С. 829-839.

9. Глебовицкий В.А., Хильтова В.Я., Козаков И.К. Тектоническое строение Сибирского кратона: интерпретация геолого-геофизических, геохронологических и изотопно-геохимических данных. Геотектоника, 2008. – № 1. – С. 12–26.

10. Головенок В.К. Высокоглиноземистые формации докембрия. Л.: Недра, 1977. – 266 с.

11. Диденко А.Н., Козаков И.К., Бибикова Е.В., Водовозов В.Ю., Хильтова В.Я., Резницкий Л.З., Иванов А.В., Левицкий В.И., Травин А.В., Шевченко Д.О., Рассказов С.В. Палеомагнетизм нижнепротерозойских гранитоидов шарыжалгайского выступа фундамента Сибирского кратона и геодинамические следствия. Доклады академии наук, 2003. – Т. 390. – № 3. – С. 368-373.

12. Донская Т.В. Раннепротерозойский гранитоидный магматизм Сибирского кратона: диссертация на соискание ученой степени доктора геол.-мин. Наук: 25.00.01, 25.00.04. – Институт зменой коры СО РАН, Иркутск, 2019. – 410 с.

13. Донская Т.В., Бибикова Е.В., Мазукабзов А.М., Козаков И.К., Гладкочуб Д.П., Кирнозова Т.И., Плоткина Ю.В., Резницкий Л.З. Приморский комплекс гранитоидов Западного Прибайкалья: геохронология, геодинамическая типизация. Геология и геофизика, 2003. – Т. 44. – № 10. – С. 1006–1016.

Донская Т.В., Гладкочуб Д.П., Ковач В.П., Мазукабзов А.М.
 Петрогенезис раннепротерозойских постколлизионных гранитоидов юга
 Сибирского кратона. Петрология, 2005. – Т. 13. – № 3. – С. 253–279.

15. Донская Т.В., Гладкочуб Д.П., Котов А.Б., Сальникова Е.Б., Бадашкова Е.Е., Мазукабзов А.М., Ковач В.П., Ефремова У.С. Возраст и петрогенезис раннепротерозойских диоритов даек Байкальского выступа фундамента Сибирского кратона. Геология и геофизика, 2024. – Т. 65.

100

16. Донская Т.В., Гладкочуб Д.П., Мазукабзов А.М., Демонтерова Е.И., Ефремова У.С. Геохимические критерии разделения протерозойских долеритов даек центральной части Байкальского выступа фундамента Сибирского кратона. Геохимия, 2023. – Т. 68. – №5. – С. 488–507.

17. Донская Т.В., Гладкочуб Д.П., Мазукабзов А.М., Пресняков С.Л., Баянова Т.Б. Палеопротерозойские гранитоиды чуйского и кутимского комплексов (юг Сибирского кратона): возраст, петрогенезис и геодинамическая природа. Геология и геофизика, 2-13. – Т. 54. – № 3. – С. 371–389.

18. Ефремова У.С., Донская Т.В., Гладкочуб Д.П., Мазукабзов А.М., Брянский Н.В. Состав, U-Pb возраст детритовых цирконов и источники вещества терригенных пород иликтинской свиты (Западное Прибайкалье). Геодинамическая эволюция литосферы ЦентральноАзиатского подвижного пояса (от океана к континенту), 2022. – Вып. 20. – Иркутск: ИЗК СО РАН. – С. 101–104.

19. Ефремова У.С., Донская Т.В., Гладкочуб Д.П., Мазукабзов А.М., Иванов А.В., Брянский Н.В. Раннепротерозойские отложения иликтинской свиты как индикаторы эволюции Акитканского орогена (юг Сибирского кратона). Геология и геофизика. – 2024. – Т. 65. – № 5. – С. 631–654.

20. Ефремова У.С., Донская Т.В., Мазукабзов А.М., Гладкочуб Д.П., Хубанов В.Б. Положение анайской свиты в разрезе протерозоя Байкальского выступа фундамента Сибирской платформы. Геодинамика и тектонофизика, 2023. – Т. 14. – № 2. 0695.

 Калинина К.П., Кульчицкий А.С. Геологическая карта СССР масштаба
 1:200 000, Серия Прибайкальская, лист N-48-XXIX. Объяснительная записка. Издво: Недра, М., 1964. – 84 с.

22. Ковач В.П., Котов А.Б., Гладкочуб Д.П., Толмачева Е.В., Великославинский С.Д., Гороховский Б.М., Подковыров В.Н., Загорная Н.Ю., Плоткина Ю.В. Возраст и источники метапесчаников Чинесйкой подгруппы (Удоканская группа, Алданский щит): результаты U–Th–Pb геохронологических (LA–ICP–MS) и Nd изотопных исследований. Доклады академии наук, 2018. – Вып. 482. – №1. – С. 1138-1141.

23. Котов А.Б., Сальникова Е.Б., Ларин А.М., Ковач В.П., Саватенков В.М., Яковлева С.З., Бережная Н.Г., Плоткина Ю.В. Раннепротерозойские гранитоиды зоны сочленения Олекминской гранит-зеленокаменной и Алданской гранулитогнейсовых областей, Алданский щит: возраст, источники и геодинамические обстановки формирования. Петрология, 2004. – Т. 12. – № 1. – С. 46–67.

 Кульчицкий А.С., 1957. Новые данные по стратиграфии Центрального Прибайкалья. Материалы по геол. и пол. ископ. Восточной Сибири, 1957. – Вып. 1 (XXII). – Иркутск.

25. Кущ Л.В., Макрыгина В.А. Сравнительная характеристика щелочных приразломных метасоматитов и гранитоидов зон региональных разломов в интервале 2.1-1.6 млрд лет в южном обрамлении Сибирской платформы. Геология и геофизика. – 2014. – Т. 55. – № 3. – С. 417–431.

26. Ларин А.М., Сальникова Е.Б., Котов А.Б., Рыцк Е.Ю., Яковлева С.З., Бережная Н.Г., Ковач В.П., Булдыгеров В.В., Срывцев Н.А. Северо-Байкальский вулкано-плутонический пояс: возраст, длительность формирования, тектоническое положение. Доклады академии наук, 2003. – Т. 392. – №7. – С. 963–967.

27. Ларичев А.И., Видик С.В., Сергеев С.А., Осадчий И.В. Петрографическая характеристика и возраст пород Алдано-Анабарского блока фундамента Сибирской платформы по данным изучения керна глубоких скважин. Региональная геология и металлогения, 2022. – № 92. – С. 28–40.

28. Мазукабзов А.М., Станевич А.М., Гладкочуб Д.П., Донская Т.В., Хубанов В.Б., Мотова З.Л., Корнилова Т.А. Отложения рифтогенного этапа развития пассивной окраины Палеоазиатского океана (Байкальский сегмент). Доклады академии наук, 2018. – Т. 478. – № 5. – С. 566-569.

29. Макрыгина В.А. Геохимия регионального метаморфизма и ультраметаморфизма умеренных и низких давлений. – Новосибирск: Наука, 1981.
 – 199 с.

30. Мац В.Д., Аносов В.С., Дунская Н.К. Геологическая карта СССР масштаба 1:200 000, лист N-48-XXIV. Объяснительна записка. 1961. – 79 с.

102

31. Мац В.Д. Граница нижнего протерозоя и рифея на западной окраине Байкальской горной области. Л.: Наука, 1983. – С. 78-85.

32. Митрофанова Н. Н., Болдырев В. И., Коробейников Н. К., Митрофанов Г.Л., Кнутова С. В., Семейкина Л. К., Пай В. М., Владимиров А. Е., Горяинова Л. Н., Макарьев Л.Б. Государственная геологическая карта Российской Федерации. Масштаб 1 : 1 000 000 (третье поколение). Серия Алдано-Забайкальская. Лист О-49 – Киренск. Объяснительная записка. – СПб.: Картфабрика ВСЕГЕИ, 2012. – 607 с. + 8 вкл.

33. Мотова З.Л., Донская Т.В., Гладкочуб Д.П., Мазукабзов А.М., Демонтерова Е.И. Геохимия и источники сноса раннепротерозойских терригенных пород Урикско-Ийского грабена (юг Сибирского кратона). Геология и геофизика, 2022. – Вып. 63. – №1. – С. 39-54.

34. Неелов А.Н. Петрохимическая классификация метаморфизованных осадочных и вулканических пород. Л.: Наука, 1980. – 100 с.

35. Неймарк Л.А., Ларин А.М., Немчин А.А., Овчинникова Г.В., Рыцк Е.Ю. Анорогенная природа магматизма в Северо-Байкальском вулканическом поясе: геохимические, геохронологические (U-Pb) и изотопные (Pb, Nd) данные. Петрология, 1998. – Т. 6. – № 2. – С. 139-164.

36. Неймарк Л.А., Ларин А.М., Яковлева С.З., Срывцев Н.А., Булдыгеров В.В. Новые данные о возрасте пород акитканской серии БайкалоПатомской складчатой области по результатам U-Pb датирования цирконов. Доклады АН СССР, 1991. – Вып. 320, – №1. – С. 182—186.

37. Обручев С.В., Великославинский Д.А. Докембрий западного побережья Байкала. Тр. лабор. геол. докембрия АН СССР, 1953. – Вып. 2.

38. Петрова З.И. Геохимия пород Голоустенского блока в южном обрамлении Сибирской платформы. Геохимия. – 2001. – № 6. – С. 593–606.

39. Петрова З.И., Макрыгина В.А., Антипин В.С. Петрологогеохимическаякорреляция гранитов рапакиви и кислых вулканитов в южном обрамлении Сибирской платформы. Петрология. – 1997. – Т. 5. – № 3. – С. 291–311. 40. Розен О.М. Сибирский кратон: тектоническое районирование, этапы эволюции. Геотектоника, 2003. – № 3. – с. 3–21.

41. Савельева В.Б., Базарова Е.П. Геохимические особенности, условия кристаллизации и потенциальная рудоносность раннепротерозойского приморского комплекса гранитов рапакиви (Западное Прибайкалье). Геология и геофизика, 2012. – Т. 53. – № 2. – С. 193–218.

42. Савельева В.Б., Базарова Е.П., Данилов Б.С. Новые проявления карбонатитоподобных в Западном Прибайкалье. Доклады академии наук, 2014. – Т. 459. – № 4. – С. 454–458.

43. Савельева В.Б., Данилова Ю.В., Шумилова Т.Г., Иванов А.В., Данилов Б.С., Базарова Е.П. Эпигенетическая графитизация в фундаменте Сибирского кратона – свидетельство миграции обогащенных углеводородами флюидов в палеопротерозое. Доклады академии наук, 2019. – Т. 486. – № 2. – С. 217-222.

44. Савельева В.Б., Демонтерова Е.И., Данилова Ю.В., Базарова Е.П., Иванов А.В., Каменецкий В.С. Новый карбонатитовый комплекс в Западном Прибайкалье (юг Сибирского кратона): минеральный состав, возраст, геохимия и петрогенезис. Петрология, 2016. – т. 24. – № 3. – С. 292-324.

45. Салоп Л.И., Травин Л.В., Шалек Е.А. К стратиграфии и тектонике докембрия южной части Байкальского хребта (о положении анайской свиты в разрезе докембрия Западного Прибайкалья). Проблемы геологии докембрия Сибирской платформы и ее складчатого обрамления. Л.: ВСЕГЕИ, 1974. – С. 144–172

46. Сальникова Е.Б., Котов А.Б., Беляцкий Б.В., Яковлева С.З., Морозова И.М., Бережная Н.Г., Загорная Н.Ю. U-Pb возраст гранитоидов зоны сочленения Олекминской гранит-зеленокаменной и Алданской гранулито-гнейсовой областей. Стратиграфия. Геологическая корреляция, 1997. – Т. 5. – № 2. – С. 3–12.

47. Срывцев Н.А. Строение и геохронометрия акитканской серии Западного Прибайкалья. Проблемы стратиграфии раннего докембрия Средней Сибири. – М.: Наука, 1986. – С. 50–60. 48. Устинов В.И., Рыбаков В.Г. К стратиграфии нижнего протерозоя средней части Западного Прибайкалья. Стратиграфия докембрия региона Средней Сибири. Л.: Наука, 1983. – С. 62-67

 49. Федоровский В.С. Нижний протерозой Байкальской горной области (геология и условия формирования континентальной коры в раннем докембрии).
 М: Наука, 1985. – 200 с.

50. Шацилло А.В., Рудько Д.В., Латышева И.В., Федюкин И.В. Первые палеомагнитные данные по неопротерозою восточного склона Лонгдорского поднятия (Сибирская платформа). Геодинамическая эволюция литосферы Центрально-Азиатского подвижного пояса (от океана к континенту). – Вып. 18. – Иркутск: ИЗК СО РАН, 2020. – С. 391–394

51. Юдович Я.Э., Кетрис М.П. Основы литохимии. СПб: Наука, 2000. – 497с.

52. Barker, F. Trondhjemites, Dacites and Related Rocks. Elsevier, New York, 1979.

53. Black, L. P., Kamo, S. L., Allen, C. M., Davis, D. W., Aleinikoff, J. N., Valley, J. W., Mundil, R., Campbell, I.H., Korsch, R.J., Williams, I.S., Foudoulis, C. Improved 206Pb/238U microprobe geochronology by the monitoring of a trace-element-related matrix effect; SHRIMP, ID–TIMS, ELA–ICP–MS and oxygen isotope documentation for a series of zircon standards. Chemical Geology, 2004. – V. 205. – $N_{\rm P}$ 1-2. – P. 115-140.

54. Buyantuev M., Khubanov V.B., Vrublevskaya T.T. U-Pb La-ICP-MS dating of zircons from subvolcanics of the bimodal dyke series of the western transbaikalia: Technique, and evidence of the late paleozoic extension of the crust. Geodynamics & Tectonophysics, 2017. – V. 8. – N_{2} 2. – P. 369–384.

55. Condie K.C., Arndt N., Davaille A., Puetz S.J. Zircon age peaks: production or preservation of continental crust? Geosphere, 2017. – V. 13. – P. 227–234.

56. Cox R., Lowe D.R. A conceptual review of regional-scale controls on the composition of clastic sediment and the co-evolution of continental blocks and their sedimentary cover. J. Sediment. Res., 1995. - V. 1. - P. 1-12.

57. Cullers R.L. Implications of elemental concentrations for provenance, redox conditions, and metamorphic studies of shales and limestones near Pueblo, CO, USA. Chem. Geol, 2002. – V. 191. – P. 305–327.

58. Donskaya T.V. Assembly of the Siberian Craton: Constraints from Paleoproterozoic granitoids. Precambrian Research, 2020. – V. 348. – 105869.

59. Donskaya T.V., Bibikova E.V., Gladkochub D.P., Mazukabzov A.M., Bayanova T.B., De Waele B., Bukharov A.A., Kirnozova T.I. Petrogenesis and age of the felsic volcanic rocks from the North Baikal volcanoplutonic belt, Siberian craton. Petrology, 2008. – V. 16. – N_{2} 5. – P. 422–447.

60. Donskaya T.V., Gladkochub D.P. Post-collisional magmatism of 1.88–1.84 Ga in the southern Siberian Craton: An overview. Precambrian Research, 2021. – V. 367. –№ 3. 106447.

61. Donskaya T.V., Gladkochub D.P., Mazukabzov A.M., Lepekhina E.N. Age and Sources of the Paleoproterozoic Premetamorphic Granitoids of the Goloustnaya Block of the Siberian Craton: Geodynamic Applications. Petrology, 2016. – V. 24. – № 6. – P. 543-561.

62. Donskaya T.V., Gladkochub D.P., Pisarevsky S.A., Poller U., Mazukabzov A.M., Bayanova T.B. Discovery of Archaean crust within the Akitkan orogenic belt of the Siberian craton: New insight into its architecture and history. Precambrian Research, $2009. - V. 170. - N \ge 1$.

63. Donskaya T.V., Gladkochub D.P., Fedorovsky V.S., Sklyarov E.V., Cho M.,
Sergeev S.A., Demonterova E.I., Mazukabzov A.M., Lepekhina E.N., Cheong W., Kim
J. Pre-collisional (>0.5 Ga) Complexes of the Olkhon Terrane (Southern Siberia) as an
Echo of Events in the Central Asian Orogenic Belt. Gondwana Research, 2017. – V. 42.
– P. 243–263.

64. Donskaya T.V., Mazukabzov A.M., Bibikova E.V., Gladkochub D.P., Didenko A.N., Kirnozova T.I., Vodovozov V.Yu., Stanevich A.M. Stratotype of the Chaya Formation of the Akitkan Group in the North Baikal volcanoplutonic belt: age and time of sedimentation. Russian Geology and Geophysics, 2007. – V. 48. – N_{2} 9. – P. 707–710.

65. Efremova U.S., Donskaya T.V., Gladkochub D.P., Mazukabzov A.M., Ivanov A.V., Bryansky N.V. Division of the Early Proterozoic Khargitui Formation of the Sarma Group (Akitkan Orogenic Belt, Siberian Craton) into different age sequences based on the results of U–Pb isotopic analysis of zircon. Doklady Earth Sci., 2024. – V. $517. - N_{\odot} 1. - P. 1119-1125.$

66. Elming, S.-Å., Salminen, J., Pesonen, L.J. Paleo-Mesoproterozoic Nuna supercycle, in: Pesonen, L.J., et al., eds. Ancient Supercontinents and the Paleogeography of the Earth. Amsterdam, Elsevier, 2021. – Chapter 16. – P. 499–548.

67. Ernst R.E., Gladkochub, D.P., Söderlund U., Donskaya, T.V., Pisarevsky S.A., Mazukabzov, A.M., El Bilali H. Identification of the ca. 720 Ma Irkutsk LIP and its plume centre in southern Siberia: The initiation of Laurentia-Siberia separation, Precambrian Research, 2023. – V. 394. – 107111.

68. Ernst R.E., Hamilton M.A., Söderlund U., Hanes J.A., Gladkochub D.P., Okrugin A.V., Kolotilina T.B., Mekhonoshin A.S., Bleeker W., LeCheminant A.N., Buchan K.L., Chamberlain K.R., and Didenko A.N. Long-lived connection between southern Siberia and northern Laurentia in the Proterozoic: Nature Geoscience, 2016. – V. 9. – P. 464–469.

69. Floyd P.A., Leveridge B.E. Tectonic environment of the Devonian Gramscatho basin, south Cornwall: framework mode and geochemical evidence from turbiditic sandstones. J. Geol. Soc. (London), 1987. – V. 144. – N_{2} 4. – P. 531-542.

70. Gladkochub, D.P., Donskaya T.V., Mazukabzov, A.M., Stanevich A.M., Sklyarov E.V., Ponomarchuk V.A. Signature of Precambrian extension events in the southern Siberia craton. Russian Geology and Geophysics, $2007. - V. 48. - N \ge 1. - P. 22-41.$

71. Gladkochub D.P., Donskaya T.V., Stanevich A.M., Pisarevsky S.A., Zhang S., Motova Z.L., Mazukabzov A.M., Li H. U-Pb detrital zircon geochronology and provenance of Neoproterozoic sedimentary rocks in southern Siberia: New insights into breakup of Rodinia and opening of PaleoAsian Ocean. Gondwana Research, 2019. – V. 65. - P. 1-16.

72. Gladkochub D.P., Donskaya T.V., Wingate M.T.D., Mazukabzov A.M., Pisarevsky S.A., Sklyarov E.V., Stanevich A.M. A one-billion-year gap in the Precambrian history of the Southern Siberian craton and the problem of the Transproterozoic supercontinent. American Journal of Science, 2010a. – V. 310. – $N_{\rm P}$ 9. – P. 812-825.

73. Gladkochub D.P., Mazukabzov A.M., Stanevich A.M., Donskaya T.V., Motova Z.L., Vanin V.A. Precambrian Sedimentation in the Urik–Iya Graben, Southern Siberian Craton: Main Stages and Tectonic Settings. Geotectonika, 2014. – V. 48. – N_{\odot} 5. – P. 359-370.

74. Gladkochub, D.P., Pisarevsky, S.A., Donskaya, T.V., Natapov, L. M., Mazukabzov, A.M., Stanevich, A. M., Sklyarov, E.V. Siberian craton and its evolution in terms of Rodinia hypothesis: Episodes, $2006. - V. 29. - N \ge 3. - P. 169-174.$

75. Gladkochub D.P., Pisarevsky S.A., Ernst R., Donskaya T.V., Söderlund U., Mazukabzov A.M., Hanes J. Large igneous province of about 1750 Ma in the Siberian Craton. Doklady Earth Sciences, 2010b. – V. 430. – № 2. – P. 168–171.

76. Gladkochub D.P., Stanevich A.M., Mazukabzov A.M., Donskaya T.V., Pisarevsky S.A., Nicoll G., Motova Z.L., Kornilova T.A. Early evolution of the Paleoasian ocean: LA-ICP-MS dating of detrital zircon from Late Precambrian sequences of the southern margin of the Siberian craton. Russ. Geol. Geophys., 2013. – V. 54. – \mathbb{N}° 10. – P. 1150-1163.

77. Goldstein, S.J., Jacobsen, S.B. Nd and Sr isotopic systematics of rivers water suspended material: implications for crustal evolution. Earth Planet. Sci. Lett., 1988. – V.
87. – P. 249–265.

78. Griffin W.L., Powell W.J., Pearson N.J., O'Reilly S.Y. GLITTER: data reduction software for laser ablation ICP-MS. Laser ablation ICP-MS in theEarth sciences: current practices and outstanding issues. Ed. Sylvester P.J. Mineral. Assoc. Can. Short Course., 2008. – V. 40. – P. 308–311.

79. Hayashi, K.I., Fujisawa, H., Holland, H.D., Ohmoto, H. Geochemistry of ~1.9 Ga sedimentary rocks from northeastern Labrador, Canada. Geochim. Cosmochim. Acta, 1997. – V. 61. – P. 4115–4137.
80. Hawkesworth, C., Cawood, P., Dhuime, B. Continental growth and the crustal record. Tectonophysics, 2013. – V. 609. – P. 651–660.

81. Herron M. M. Geochemical classification of terrigenous sands and shales from Core or Log Data. Journal of Sedimentary Research, 1988. – V. 58. – № 5. – P. 820–829.

82. Jacobsen, S.B., Wasserburg, G.J. Sm-Nd isotopic evolution of chondrites and achondrites, II. Earth and Planetary Science Letters, 1984. – V. 67. – № 2. – P. 137–150.

83. Khubanov V.B., Buyantuev M., Tsygankov A.A. U-Pb dating of zircons from PZ3-MZ igneous complexes of Transbaikalia by sector-field mass spectrometry with laser sampling: Technique and comparison with SHRIMP. Russian Geology and Geophysics, 2016. – V. 57. – $N_{\rm D}$ 1. – P. 190–205.

84. Li Z.-X., Liu Y., Ernst R., 2023. A dynamic 2000–540 Ma Earth history:
From cratonic amalgamation to the age of supercontinent cycle. Earth-Science Reviews, 2023. – V. 238. – 104336.

85. Ludwig K.R. User's manual for Isoplot 3.75. A geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center. Sp. Publ., 2012. – № 5. – 75 p.

86. McLennan, S.M., Hemming, S., McDaniel, D.K., Hanson, G.N. Geochemical approaches to sedimentation, provenance, and tectonics, in: Johnson, M.J., Basu, A. (Eds.), Processes Controlling the Composition of Clastic Sediments. Geol. Soc. Am. Spec. Pap., 1993. – V. 284. – pp. 21–40.

87. Nesbitt, H.W., Young, G.M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 1982. – V. 299. – P. 715–717.

88. Panteeva S.V., Gladkochub D.P., Donskaya T.V., Markova V.V., Sandimirova G.P. Determination of 24 trace elements in felsic rocks by inductively coupled plasma mass spectrometry after lithium metaborate fusion. Spectrochimica Acta Part B: Atomic Spectroscopy, 2003. - V. 58. - N 2. - P. 341-350.

89. Paton C., Hellstrom J., Paul B., Woodhead J. and Hergt J. Iolite: Freeware for the visualisation and processing of mass spectrometric data. Journal of Analytical Atomic Spectrometry, 2011. 90. Pin, C., Santos-Zalduegui, J.F. Sequential separation of light rare-earth elements, thorium and uranium by miniaturized extraction chromatography: Application to isotopic analyses of silicate rocks. Analytica Chimica Acta, 1997. – V. 339. – P. 79–89.

91. Poller U., Gladkochub D.P., Donskaya T.V., Mazukabzov A.M., Sklyarov E.V., Todt W. Multistage magmatic and metamorphic evolution in the Southern Siberian Craton: Archean and Palaeoproterozoic zircon ages revealed by SHRIMP and TIMS. Precambrian Research, 2005. – V. 136. – P. 353–368.

92. Powerman V.I., Buyantuev M.D., Ivanov A.V. A review of detrital zircon data treatment, and launch of a new tool «Dezirteer» along with the suggested universal workflow. Chem. Geol, $2021. - V.583. - N_{\odot}S02. - 120437.$

93. Powerman, V., Shatsillo, A., Chumakov, N., Kapitonov, I., Hourigan, J. Interaction between the Central Asian Orogenic Belt (CAOB) and the Siberian craton as recorded by detrital zircon suites from Transbaikalia. Precambrian Research, 2015. – V. 267. – P. 39–71.

94. Priyatkina N.S., Ernst R.E., Khudoley A.K. A preliminary reassessment of the Siberian cratonic basement with new U-Pb-Hf detrital zircon data. Precambrian Research, 2020. – V. 340. – $N_{\rm P}$ 10. – 105645.

95. Rojas-Agramonte, Y., Kröner, A., Demoux, A., Xia, X., Wang, W., Donskaya, T., Liu, D., Sun, M. Detrital and xenocrystic zircon ages from Neoproterozoic to Palaeozoic arc terranes of Mongolia: Significance for the origin of crustal fragments in the Central Asian Orogenic Belt. Gondwana Research, 2011. – V. 19. – N \circ 3. – P. 751–763.

96. Rosen O.M., Abbyasov A.A., Migdisov A.A., Yaroshevskii A.A. MINLITH – a Program to Calculate the Normative Mineralogy of Sedimentary Rocks: the Reliability of Results Obtained for Deposits of Old Platforms. Geochemistry International, 2000. – V. 38. – N_{2} 4. – P. 388–400.

97. Rosen O.M., Condie K.C., Natapov L.M., Nozhkin A.D. Archean and Early Proterozoic evolution of the Siberian Craton: a preliminary assessment. Archean Crustal Evolution. Ed. Condie K.C. Amsterdam, Elsevier, 1994. – P. 411–459. 98. Roser, B.P., Korsch, R.J. Geochemical characterization, evolution and source of a Mesozoic accretionary wedge: the Torlesse terrane, New Zealand. Geological Magazine, 1999. – V. 136. – P. 493–512.

99. Sláma J., Košler J., Condon D.J., Crowley J.L., Gerdes A., Hanchar J.M., Horstwood M.S.A., Morris G.A., Nasdala L., Norberg N., Schaltegger U., Schoene B., Tubrett M.N., Whitehouse M.J. Plešovice zircon – A new natural reference material for U–Pb and Hf isotopic microanalysis. Chem. Geol., 2008. – V. 249. – P. 1–35.

100. Smelov A.P., Timofeev V.F. The age of the North Asian Cratonic basement: An overview. Gondwana Research, 2007. – V. 12. – P. 279–288.

101. Verma S.P., Armstrong-Altrin J.S. New multi-dimensional diagrams for tectonic discrimination of siliciclastic sediments and their application to Precambrian basins. Chem. Geol, 2013. – V. 355. – P. 117-133.

102. Villa, I.M., Holden, N.E., Possolo, A., Ickert, R.B., Hibbert, D.B., Renne, P.R. IUPAC-IUGS recommendation on the half-lives of 147Sm and 146Sm. Geochimica et Cosmochimica Acta, 2020. – V. 285. – P. 70–77.

103. Wakita H., Rey P., Schmitt R.A. Abundances of the 14 rare-earth elements and 12 other trace elements in Apollo 12 samples: five igneous and one breccia rocks and four soils, in: Proc. 2nd Lunar Sci. Conf., Pergamon Press (Oxford), 1970. – V. 2. – P. 1319–1329.

104. Wiedenbeck M., Hanchar J.M., Peck W.H., Sylvester P., Valley J., Whitehouse M., Kronz A., Morishita Y., Nasdala L., Fiebig J., Franchi I., Girard J.P., Greenwood R.C., Hinton R., Kita N., Mason P.R.D., Norman M., Ogasawara M., Piccoli R., Rhede D., Satoh H., Schulz-Dobrick B., Skar O., Spicuzza M.J., Terada K., Tindle A., Togashi S., Vennemann T., Xie Q., Zheng Y.F. Further characterization of the 91500 zircon crystal. Geostandards Geoanalytical Res., 2004. – V. 28. P. 9–39.

105. Zhang S.H., Li Z.-X., Evans D.A.D., Wu H., Li H., Dong J. Pre-Rodinia supercontinent Nuna shaping up: A global synthesis with new paleomagnetic results from North China. Earth and Planetary Science Letters, 2012. – V. 353. – P. 145–155.

106. Zhao G., Cawood, P.A., Wilde S.A., Sun M. Review of global 2.1–1.8 Ga orogens: implications for a pre-Rodinia supercontinent. Earth-Science Reviews, 2002. – V. 59. – P. 125–162.

107. Zhao G., Sun M., Wilde S.A., Li S. A Paleo-Mesoproterozoic supercontinent: assembly, growth and breakup. Earth-Science Reviews, 2004. – V. 67. – P. 91–123.

¥7 U							
Химическии	состяв	пород.	относимых	КУ	каргитуи	скои	свите
	cocrab	пород,	ormoennibin			UNUI	v D III v

Группа		I группа		ІІ группа							
Участок		1					2				
Образец	2106	2108	2109	0898	0899	08101	08102	08106	2112	2113	
SiO ₂ , мас. %	69.61	69.96	68.73	94.49	95.50	89.77	74.31	95.02	95.61	93.60	
TiO ₂	0.36	0.14	0.29	0.06	0.05	0.18	0.74	0.03	0.04	0.09	
Al ₂ O ₃	15.22	16.15	15.79	2.50	2.10	4.45	12.55	1.60	1.27	2.05	
Fe ₂ O ₃	1.87	1.18	1.33	н. об.	0.20	н. об.	н. об.	0.15	0.43	0.70	
FeO	1.67	0.94	1.55	1.76	0.82	2.37	4.32	1.35	1.20	1.18	
Fe ₂ O _{3tot}	3.73	2.23	3.05	-	1.11	-	-	1.66	1.77	2.01	
MnO	0.02	0.02	0.03	0.02	0.01	0.02	0.02	0.01	0.01	0.01	
MgO	0.86	0.49	0.94	0.18	0.10	0.73	1.35	0.59	0.48	0.46	
CaO	2.92	1.79	2.91	н. об.	н. об.	н. об.	0.35	0.12	0.32	н. об.	
Na ₂ O	4.72	5.13	5.00	0.02	0.02	0.10	0.27	н. об.	н. об.	0.02	
K ₂ O	1.58	2.94	1.73	0.94	0.96	0.75	2.85	0.20	0.08	0.86	
P_2O_5	0.10	0.05	0.11	0.06	0.06	0.09	0.07	0.07	0.03	0.03	
п.п.п.	1.02	0.78	0.94	0.28	0.30	1.31	2.87	0.54	0.37	0.67	
H_2O^-	0.04	0.07	0.10	0.09	0.04	0.12	0.11	0.09	0.08	0.20	
CO ₂	н. об.	н. об.	0.08	н. об.	н. об.	н. об.	н. об.	н. об.	0.07	0.08	
Сумма	100.00	99.65	99.52	100.40	100.16	99.89	99.81	99.77	99.99	99.94	
Со, г/т	7.3	н. об.	10	4.9	2	7.4	18	3.5	6.5	4.9	
Ni	9.8	8.9	14	25	15	27	39	15	9.5	10	
Sc	4	4.1	н. об.	2.8	2.3	3.9	14	2.1	н. об.	4	
V	30	15	33	16	12	27	75	12	11	15	
Cr	73	58	61	100	63	74	110	71	85	64	
Rb	35.69	42.22	28.55	31.70	33.09	25.50	91.02	11.36	4.87	23.38	
Sr	549.34	327.74	376.62	25.20	28.02	21.86	26.47	15.70	40.18	5.05	
Y	1.57	1.08	1.32	4.91	4.37	3.93	13.70	2.56	1.97	2.60	
Zr	135.31	71.00	105.58	95.76	143.60	80.37	217.70	51.91	43.46	72.21	
Nb	1.67	1.76	2.40	2.58	2.40	4.40	13.40	1.60	1.33	1.71	
Ba	554.32	1175.5	960.44	140	120	180	540	44	6.21	105.91	
La	27.05	3.51	10.07	7.49	8.61	9.52	29.90	5.80	4.46	5.21	
Ce	46.38	7.24	19.15	14.88	16.36	19.25	62.57	11.14	8.58	10.34	
Pr	4.71	0.79	1.98	1.74	1.84	2.17	6.76	1.26	0.88	1.12	
Nd	15.06	2.64	6.82	6.64	7.05	8.26	26.55	4.71	2.87	4.01	
Sm	2.39	0.56	1.26	1.24	1.29	1.65	4.60	0.79	0.53	0.80	
Eu	0.53	0.15	0.30	0.41	0.37	0.39	1.00	0.22	0.11	0.15	
Gd	0.93	0.42	0.66	1.00	0.83	1.08	3.05	0.58	0.42	0.58	
Tb	0.11	0.06	0.08	0.16	0.14	0.16	0.45	0.09	0.06	0.09	
Dy	0.41	0.31	0.35	0.88	0.75	0.87	2.52	0.51	0.36	0.55	
Но	0.06	0.06	0.06	0.18	0.17	0.16	0.52	0.11	0.07	0.10	
Er	0.14	0.14	0.16	0.48	0.49	0.44	1.39	0.31	0.19	0.27	
Tm	0.02	0.02	0.02	0.07	0.07	0.06	0.22	0.04	0.03	0.04	
Yb	0.13	0.11	0.15	0.45	0.43	0.38	1.30	0.26	0.22	0.27	
Lu	0.02	0.01	0.02	0.09	0.08	0.07	0.23	0.04	0.03	0.04	
Hf	3.49	2.02	2.70	2.78	4.10	2.65	6.72	1.58	1.16	1.90	
Ta	0.07	0.02	0.07	0.24	0.27	0.37	0.97	2.42	0.15	0.13	
Th	5.93	3.18	4.04	3.24	3.35	4.30	12.37	2.50	1.96	2.32	
U	0.28	0.22	0.43	1.64	1.85	1.35	4.10	1.28	0.31	0.46	
a	0.26	0.27	0.27	0.03	0.03	0.06	0.20	0.02	0.02	0.03	
b	0.12	0.07	0.12	0.03	0.02	0.05	0.10	0.04	0.04	0.04	
Eu/Eu*	0.92	0.89	0.90	1.10	1.04	0.85	0.78	0.95	0.69	0.67	
$(La/Yb)_n$	137.48	21.63	43.71	10.78	13.04	16.10	14.85	14.20	13.40	12.45	
$(Gd/Yb)_n$	6.21	3.37	3.77	1.87	1.64	2.39	1.98	1.84	1.65	1.82	

Группа	ІІ группа									
Участок			2					3		
Образец	2114	2115	2116	2125	2126	2144	2146	2147	2148	2149
SiO ₂ , мас. %	95.28	94.45	96.15	68.82	96.72	72.33	94.34	91.72	96.17	91.34
TiO ₂	0.06	0.07	0.03	0.96	0.04	0.83	0.09	0.18	0.08	0.18
Al ₂ O ₃	1.12	1.40	1.14	15.18	0.82	12.22	2.29	3.71	1.09	3.01
Fe ₂ O ₃	0.22	0.65	0.22	1.93	0.39	2.22	0.26	0.64	0.18	0.53
FeO	1.93	1.67	1.20	3.60	0.95	3.74	1.11	0.99	0.87	2.08
Fe ₂ O _{3tot}	2.36	2.50	1.56	5.95	1.45	6.39	1.50	1.74	1.15	2.85
MnO	0.02	0.03	0.01	0.03	н. об.	0.02	н. об.	н. об.	0.01	0.01
MgO	0.54	0.50	0.45	1.54	0.30	1.56	0.33	0.29	0.48	0.82
CaO	0.18	0.41	0.15	0.09	н. об.	0.28	0.03	0.17	0.06	0.11
Na ₂ O	0.03	н. об.	н. об.	0.26	н. об.	0.70	0.53	0.59	0.06	0.16
K ₂ O	0.20	0.16	0.16	3.99	0.05	2.52	0.54	0.73	0.31	0.58
P_2O_5	0.04	0.03	0.03	0.10	0.03	0.08	0.04	0.03	0.03	0.03
П.П.П.	0.34	0.41	0.31	3.02	0.32	3.00	0.39	0.34	0.86	0.86
H ₂ O ⁻	0.05	0.06	0.02	0.06	0.02	0.12	0.03	0.03	0.03	н. об.
CO ₂	н. об.	0.07	0.10	0.09	н. об.	н. об.	0.10	0.10	0.07	0.07
Сумма	100.00	99.90	99.97	99.67	99.64	99.62	100.08	99.52	100.30	99.78
Со, г/т	н. об.	4.7	5.3	20	5.4	25	6	7	н. об.	9
Ni	8.4	9.5	8.1	33	7.3	49	9.1	9.4	7.6	21
Sc	н. об.	5.2	н. об.	11	M	13	4	5.1	4.8	5.3
V G	13	14	16	86	21	93	21	22	14	27
Cr	140	110	110	130	75	130	83	67	81	76
Rb	11.21	1.47	9.83	107.22	2.01	64.46	17.58	17.15	8.95	18.56
Sr	11.58	10.26	12.91	28.27	11.83	23.93	13.51	17.56	3.11	8.50
Y Za	2.85	2.90	2.33	18.41	1.59	18.21	3.54	5.88	2.51	4.00
Zľ	40.15	02.30	44.30	294.54	33.11	209.17	95.50	210.71	48.90	2.06
NU Do	1.40 54 01	1.02	1.12	13.91	1.10	17.00	2.45	2.99	1.00	5.00 100 79
Da Lo	J4.21 1 19	3 17	5 26	21 45	2 70	409.83	678	103.38 7 77	6 20	8 62
La	4.10	5.17 10.40	10.01	21.43 45.18	2.70	23.42 53.20	0.78	16.17	0.20	0.05 18.06
Dr.	0.01	0.68	1 1 2	5 32	4.65	6.12	1 47	1 78	1 26	1 77
Nd	3.20	2.64	3.71	18.83	2.03	21.68	5.10	6.60	1.20	6.22
Sm	0.69	0.57	0.67	3.89	0.46	21.00 4 47	1.04	1.37	0.80	1 37
Eu	0.12	0.12	0.09	0.74	0.08	0.86	0.20	0.28	0.10	0.24
Gd	0.58	0.55	0.50	3.14	0.00	3.42	0.20	1.06	0.10	1.08
Tb	0.08	0.09	0.08	0.49	0.05	0.52	0.11	0.16	0.08	0.16
Dy	0.49	0.52	0.42	3.06	0.28	3.23	0.62	0.96	0.47	0.90
Ho	0.10	0.10	0.08	0.63	0.06	0.63	0.13	0.21	0.08	0.17
Er	0.26	0.28	0.22	1.71	0.16	1.72	0.34	0.59	0.23	0.44
Tm	0.04	0.04	0.03	0.26	0.02	0.27	0.06	0.09	0.03	0.07
Yb	0.26	0.31	0.22	1.85	0.15	1.81	0.37	0.63	0.25	0.43
Lu	0.04	0.04	0.04	0.28	0.02	0.28	0.05	0.10	0.03	0.07
Hf	1.11	1.63	1.13	7.58	1.33	7.28	2.50	5.53	1.36	2.11
Та	0.10	0.13	0.10	1.36	0.10	1.34	0.18	0.30	0.09	0.24
Th	2.15	2.22	1.80	12.03	1.83	11.17	3.74	1.94	3.17	1.46
U	0.35	0.29	0.33	1.87	0.34	2.68	0.95	0.29	1.19	0.30
a	0.01	0.02	0.01	0.26	0.01	0.20	0.03	0.05	0.01	0.04
b	0.05	0.05	0.03	0.12	0.03	0.13	0.03	0.03	0.03	0.06
Eu/Eu*	0.56	0.65	0.46	0.63	0.57	0.65	0.66	0.69	0.46	0.60
$(La/Yb)_n$	10.28	6.55	15.45	7.50	11.32	9.11	11.91	7.96	16.33	13.08

	Группа	II группа			III группа						
	Участок		3			4		5	5	e	<u>5</u>
	Образец	2151	1496	1497	2153	2154	2155	1020	1023	21103	21108
	SiO ₂ , мас. %	91.39	94.08	94.40	92.37	92.93	91.49	89.80	92.02	92.01	96.30
	TiO ₂	0.16	0.12	0.07	0.26	0.13	0.13	0.18	0.13	0.10	0.02
	Al ₂ O ₃	3.97	2.16	1.74	3.83	3.66	3.81	4.65	3.85	2.83	1.52
	Fe ₂ O ₃	0.76	0.32	0.19	0.76	0.43	1.20	0.16	0.34	0.93	0.30
	FeO	1.40	1.58	1.63	0.95	0.77	1.37	2.67	1.50	2.14	0.70
	Fe ₂ O _{3tot}	2.32	2.08	2.01	1.82	1.29	2.72	3.14	2.01	3.32	1.08
	MnO	0.01	н. об.	0.02	0.01	н. об.	0.05	0.01	0.01	0.07	н. об.
	MgO	0.52	0.50	0.53	0.32	0.12	0.33	0.29	0.23	0.24	0.07
	CaO	н. об.	0.25	0.33	н. об.	н. об.	0.02	0.04	0.26	0.35	0.15
	Na ₂ O	0.25	0.27	0.06	0.05	0.06	0.03	0.13	0.14	0.04	0.10
	K ₂ O	0.83	0.37	0.30	1.09	1.08	0.99	1.06	0.92	0.53	0.35
	P_2O_5	0.04	0.03	0.04	0.03	0.03	0.05	0.03	0.03	0.11	н. об.
	п.п.п.	0.90	0.14	0.37	0.63	0.36	0.64	0.98	0.67	0.37	0.17
	H_2O^2	0.03	H. 00.	H. 00.	н. об.	H. 00.	н. об.	0.07	0.04	0.06	н. об.
	СО2 Сумма	0.04 100.31	0.10 99.92	0.17 99.85	н. оо. 100.31	0.08 99.65	н. оо. 100.11	н. оп. 100.07	н. оп. 100.14	н. оо. 99.79	н. оо. 99.68
	Со, г/т	10	4	4.5	10	7	16	4.1	3.9	11	6
	Ni	13	20	21	8.2	8.3	12	18	14	12	6
	Sc	9.2	н. об.	н. об.	6.1	н. об.	4.1	2.2	2.7	н. об.	н. об.
	V	31	14	9.7	33	36	37	5.7	21	22	51
	Cr	71	128	162	65	84	67	78	93	93	100
	Rb	26.92	11.35	13.99	45.83	40.49	38.83	37.83	41.75	26.19	11.67
	Sr	15.42	11.89	15.64	12.24	3.64	7.24	16.84	20.17	53.23	12.99
	Y	6.17	4.63	3.41	6.85	2.94	5.29	7.27	5.79	11.36	5.28
	Zr	131.68	53.38	63.11	190.22	61.95	75.91	102.63	80.91	129.82	88.06
	Nb	4.36	3.67	1.56	5.77	2.71	3.59	4.75	3.21	5.40	1.39
	Ва	113.77	89.85	53.43	255.80	256.75	255.58	209.69	197.88	125.16	115.79
	La	8.84	11.80	/.30	/.83	4.83	21.29	/.59	5.72	8.24	4.34
	Ce Dr	2.01	19.99	12.81	15.19	9.15	21.38	15.80	10.05	24.94	12.09
	PT Nd	2.01	2.10	1.43	1.0/	0.94	2.33	1.05	1.09	1.90	1.10
	Sm	1.09	1.30	0.03	5.51	5.52 0.64	0.00	5.94 1.14	0.82	0.81	4.04
	5m Fu	0.24	0.28	0.93	0.21	0.04	0.28	0.21	0.82	0.37	0.80
	Gd	1.07	1.14	0.21	0.21	0.11	1.12	1 10	0.10	2 10	0.21
	Th	0.17	0.16	0.10	0.12	0.49	0.14	0.18	0.02	0.36	0.05
	Dv	1.04	0.92	0.67	0.91	0.46	0.86	1.08	0.83	2.04	0.95
	Ho	0.21	0.19	0.13	0.20	0.11	0.17	0.22	0.18	0.41	0.20
	Er	0.57	0.48	0.35	0.61	0.31	0.50	0.64	0.55	1.08	0.65
	Tm	0.09	0.08	0.05	0.10	0.05	0.08	0.10	0.09	0.17	0.11
	Yb	0.63	0.48	0.38	0.74	0.34	0.52	0.72	0.60	1.10	0.75
	Lu	0.09	0.08	0.07	0.12	0.05	0.07	0.11	0.11	0.20	0.16
	Hf	2.94	1.43	1.62	4.03	1.43	1.76	2.43	1.97	3.13	2.29
	Та	0.44	0.40	0.19	0.55	0.27	0.33	0.62	0.44	0.41	0.16
	Th	0.85	2.33	2.14	12.99	3.32	5.60	5.38	4.48	4.36	2.70
	U	0.14	0.37	0.40	0.76	0.73	0.66	0.89	0.70	1.29	0.66
	a	0.05	0.03	0.02	0.05	0.05	0.05	0.06	0.05	0.04	0.02
	b F (F i	0.04	0.04	0.04	0.03	0.02	0.04	0.05	0.04	0.06	0.02
	Eu/Eu^*	0.58	0.69	0.76	0.63	0.58	0.66	0.58	0.61	0.58	0.73
	$(La/Yb)_n$	9.09	15.77	12.41	0.84	9.25	14.09	0.85	0.19	4.83	5.75
-	(<i>Ga/10</i>)n	1.44	1.99	1.08	1.00	1.23	1.82	1.30	1.10	1.01	1.00

Группа	III группа								
Участок		6	5						
Образец	21115	21126	21127	21128					
SiO ₂ , мас. %	90.54	84.81	88.85	85.01					
TiO ₂	0.15	0.21	0.21	0.30					
Al ₂ O ₃	5.70	8.32	6.24	8.41					
Fe ₂ O ₃	0.30	0.93	0.54	0.99					
FeO	0.49	2.05	0.89	1.29					
Fe ₂ O _{3tot}	0.85	3.22	1.53	2.43					
MnO	н. об.	0.05	н. об.	0.01					
MgO	0.15	0.28	0.12	0.35					
CaO	0.13	0.58	0.04	0.05					
Na ₂ O	0.11	0.17	0.11	0.13					
K ₂ O	1.62	1.92	1.66	1.74					
P_2O_5	н. об.	0.04	0.04	0.03					
п.п.п.	0.77	0.94	0.90	1.39					
H_2O^-	0.06	0.02	н. об.	н. об.					
CO_2	0.09	н. об.	н. об.	н. об.					
Сумма	100.11	100.32	99.60	99.69					
Со, г/т	н. об.	10	н. об.	6					
Ni	6.3	6.1	5.8	8.2					
Sc	н. об.	4	н. об.	н. об.					
V	25	11	16	27					
Cr	62	76	68	68					
Rb	61.00	66.61	71.73	103.45					
Sr	51.21	62.41	49.62	52.59					
Y	6.15	13.46	8.29	10.40					
Zr	189.43	197.77	155.75	287.90					
Nb	5.36	8.83	6.44	7.95					
Ba	416.38	791.44	589.02	421.70					
La	6.79	31.67	10.33	10.36					
Ce	13.38	58.24	19.01	20.71					
Pr	1.43	5.94	2.25	2.09					
Nd	4.77	19.03	6.57	6.68					
Sm	1.20	3.17	1.34	1.54					
Eu	0.25	0.74	0.35	0.39					
Gd	0.92	2.23	1.20	1.44					
Tb	0.16	0.36	0.20	0.25					
Dy	1.03	2.30	1.33	1.60					
Ho	0.24	0.48	0.31	0.38					
Er	0.71	1.50	0.89	1.09					
Tm	0.12	0.26	0.15	0.18					
Yb	0.77	1.91	0.97	1.22					
Lu	0.13	0.29	0.17	0.18					
Ht	4.88	4.79	3.89	6.95					
Ta	0.50	0.68	0.65	0.70					
1h U	9.00	1.24	8.84	11.43					
U	2.08	1.21	1./4	1./6					
	0.07	0.12	0.08	0.12					
D E/E*	0.02	0.06	0.02	0.04					
EU/EU^{*}	0./1	0.82	0.85	0.80					
$(La/ID)_n$ (Cd/Vb)	J./1 1.02	10.75	0.88	3.51					
$(Ga/ID)_n$	1.02	0.99	1.04	1.00					

Примечание. Белые столбцы – содержания химических элементов в лейкократовых гнейсах и кварцитах второй и третьей групп, зеленые – в плагиоклаз-слюдисто-кварцевых сланцах второй группы, голубые – в слюдисто-кварцевых сланцах третьей группы. Сокращения: н.оп. – оксид не определялся, н об. – оксид не обнаружен. Рассчитанные параметры: $a = Al_2O_3/SiO_2$, $b = F_2O_3+FeO+MnO+MgO+CaO$ (содержания оксидов в ат. кол.) (Неелов, 1980). Еu/Eu* = Eu_n/($\sqrt{(Sm_n \times Gd_n)}$), n – значения нормированы по составу хондрита (Wakita et al., 1970).

Химический состав песчаников и сланцев иликтинской свиты

Участок					Участо	к Курга				
Образец	0815	0816	0817	0818	0819	0820	0821	0822	0823	0824
SiO ₂ , мас. %	78.16	72.46	72.22	72.90	76.00	74.79	75.55	77.18	77.82	59.13
TiO ₂	0.42	0.60	0.59	0.56	0.48	0.51	0.54	0.59	0.36	0.89
Al ₂ O ₃	10.50	12.90	13.15	12.67	10.91	11.72	12.00	10.30	10.40	18.75
Fe_2O_3	0.39	1.49	0.54	0.60	0.29	0.27	0.46	0.57	0.53	1.63
FeO	2.85	3.28	3.11	3.55	3.71	3.29	3.31	2.77	2.18	6.26
Fe ₂ O _{3tot}	-	-	-	-	-	-	-	-	-	-
MnO	0.04	0.05	0.06	0.03	0.04	0.04	0.03	0.05	0.05	0.06
MgO	1.17	2.00	1.52	1.63	1.42	1.48	1.56	1.15	1.26	3.19
CaO	0.55	0.45	1.50	0.87	0.48	0.66	0.20	1.94	1.83	0.31
Na ₂ O	2.52	2.06	2.90	3.04	2.43	3.12	2.70	2.77	3.25	1.38
K ₂ O	2.44	2.39	2.77	2.10	2.30	2.40	2.06	1.57	1.71	3.77
P_2O_5	0.09	0.14	0.12	0.18	0.16	0.15	0.16	0.16	0.13	0.17
п.п.п.	1.31	2.51	1.60	1.83	1.56	1.46	1.74	1.14	0.85	4.36
H_2O^-	0.05	0.14	0.06	0.08	0.08	0.03	0.06	0.04	0.06	0.16
CO_2	н. об.	0.11	н. об.	0.11	н. об.	н. об.				
Сумма	100.49	100.47	100.14	100.03	99.8 5	100.03	100.36	100.33	100.44	100.06
Со, г/т	8	7	14	6	8	7	9	7	5	6
Ni	28	46	51	39	30	27	49	28	22	36
Sc	15	18	14	14	15	13	13	14	6	26
V	55	62	68	68	74	60	43	53	41	150
Cr	58	37	41	15	13	72	150	91	61	150
Rb	73	111	121	84	73	73	81	48	59	73
Sr	88	48	116	81	81	104	63	114	95	21
Y	14	19	18	18	17	16	16	15	15	18
Zr	157	172	143	155	169	147	174	199	136	122
Nb	6	9	9	8	7	7	8	9	6	12
Ba	823	607	807	642	824	515	645	550	473	380
La	27.60	33.70	28.98	26.56	29.87	31.69	26.83	31.78	27.04	31.12
Ce	49.32	56.33	52.92	48.73	56.27	57.65	50.95	56.06	47.37	59.09
Pr	5.53	6.89	6.18	5.87	6.48	6.48	5.78	6.24	5.41	7.25
Nd	21.43	27.28	24.51	24.04	25.03	25.50	22.29	24.86	20.86	29.09
Sm	3.43	4.94	4.29	4.71	4.13	4.31	3.97	4.02	3.44	5.26
Eu	0.61	0.89	0.92	0.81	0.78	0.73	0.73	0.76	0.69	0.80
Gd	2.22	3.38	3.01	3.10	2.88	2.81	2.61	2.82	2.65	3.43
Tb	0.34	0.50	0.44	0.44	0.45	0.43	0.41	0.40	0.37	0.50
Dy	2.22	3.09	2.86	2.93	2.77	2.65	2.55	2.54	2.46	3.19
Но	0.44	0.61	0.55	0.56	0.54	0.52	0.49	0.49	0.48	0.65
Er	1.21	1.75	1.55	1.58	1.48	1.42	1.36	1.33	1.33	1.82
Tm	0.17	0.24	0.22	0.23	0.22	0.21	0.20	0.19	0.18	0.27
Yb	1.09	1.42	1.30	1.40	1.34	1.36	1.27	1.12	1.09	1.72
Lu	0.21	0.25	0.25	0.25	0.25	0.25	0.22	0.21	0.21	0.31
Hf	4.05	4.63	3.99	4.25	4.60	3.85	4.73	5.40	3.84	3.47
Та	0.38	0.61	0.57	0.52	0.56	0.57	0.53	0.62	0.32	1.73
Th	14.76	13.79	12.68	13.06	16.21	15.33	15.36	14.76	14.73	14.80
U	2.62	3.45	3.36	3.57	2.95	2.92	2.66	3.76	3.24	4.51
a b	0.16	0.21	0.21	0.20	0.17	0.18	0.19	0.16	0.16	0.37
(L_{a}/Vb)	0.08	0.15	0.12	0.12	0.10	15.02	0.10	0.11	16.00	11.69
$(LU/ID)_n$ E_U/E_U*	10.33	13.33	14.42	12.27	14.45	15.05	13.72	18.43	10.08	0.59
CIA	57 42	65 50	55 61	58.96	50.70	0.05 56 75	63.04	51 20	0.71 40.70	73.06
	1 10	1.05	1 17	1 11	1 09	1 15	1.00	1 24	49.70	0.02
101	1.10	1.05	1.1/	1.11	1.00	1.15	1.00	1.54	1.40	0.92

Участок		Уч	асток Кур	ога		Участок Глубокая падь					
Образец	0825	0826	0827	0828	0829	0872	0873	0874	0882	0883	
SiO ₂ , мас. %	64.59	73.87	65.40	74.27	75.51	72.41	74.48	59.46	57.65	73.35	
TiO ₂	0.89	0.55	0.80	0.53	0.51	0.58	0.49	0.83	0.70	0.52	
Al ₂ O ₃	16.20	12.44	15.32	12.74	11.55	12.42	11.50	18.20	18.95	12.07	
Fe ₂ O ₃	0.92	0.53	1.07	0.84	0.84	0.96	0.46	0.93	1.24	0.91	
FeO	5.40	3.61	5.27	3.02	3.04	2.91	3.18	5.72	6.66	3.94	
Fe ₂ O _{3tot}	-	-	-	-	-	-	-	-	-	-	
MnO	0.05	0.04	0.05	0.02	0.03	0.03	0.03	0.04	0.08	0.04	
MgO	2.64	1.63	3.19	1.70	1.38	2.65	2.20	4.13	3.69	2.38	
CaO	0.98	0.60	0.19	0.23	0.38	1.20	0.98	0.75	0.58	0.29	
Na ₂ O	2.06	2.82	1.19	2.79	2.58	2.60	3.70	0.29	1.66	1.73	
K ₂ O	2.84	1.//	5.32	1./5	2.26	1.98	1.10	4.51	3.52	2.00	
P_2O_5	0.20	0.16	0.17	0.17	0.16	0.10	0.09	0.14	0.11	0.10	
П.П.П.	5.51	2.02	5.75	2.14	1.//	1.99	1.45	4.54	4.80	2.90	
H ₂ O	0.06	0.07	0.11	0.06	0.15	0.00	0.02	0.14	0.11	0.07	
	н. 00. 100-14	н. оо. 100-11	H. 00. 00.83	н. 00. 100.26	100.21	100.00	100.12	H. 00. 00.68	H. 00. 00 81	H. 00. 100 30	
Сумма	100.14	5	39.05	2	5	8	8	16	17	8	
Ni	38	22	27	24	37	40	34	74	84	41	
Sc	25	17	25	15	12	18	13	36	32	18	
V	110	61	100	89	61	150	98	160	180	120	
Cr	96	71	110	77	120	73	73	93	90	79	
Rb	146	83	174	82	77	94	35	242	141	80	
Sr	46	55	50	77	85	89	102	37	32	35	
Y	19	16	20	12	13	15	15	17	19	16	
Zr	166	128	138	153	186	171	153	136	101	160	
Nb	12	7	11	6	6	7	7	10	9	7	
Ba	384	138	288	334	496	439	388	568	1055	322	
La	26.20	23.32	30.28	27.27	17.03	29.68	27.21	10.62	23.48	25.93	
Ce	46.78	42.66	55.05	48.28	33.52	55.70	50.66	20.49	44.56	47.44	
Pr	5.67	5.11	6.77	5.50	3.92	6.17	5.72	2.42	5.13	5.50	
Nd	22.35	20.40	26.26	18.99	13.36	20.56	18.66	8.88	20.28	21.39	
Sm	4.30	3.67	5.40	3.40	2.91	3.90	3.56	2.30	4.00	3.81	
Eu	0.81	0.72	1.08	0.66	0.60	0.83	0.72	0.69	0.82	0.75	
Ga	2.87	2.68	3.39	2.75	2.49	3.44 0.52	3.10	2.42	3.08	2.79	
	0.40	0.42	0.50	0.40	0.37	0.52	0.49	0.44	0.40	0.40	
Dy Lo	5.05 0.64	2.49	5.05 0.72	2.10	2.20	2.60	2.00	2.91	2.97	2.50	
Fr	1.88	1 38	1.81	1 20	1 33	1.44	1.55	1.76	1.81	1.40	
Tm	0.28	0.20	0.28	0.18	0.21	0.22	0.23	0.28	0.27	0.21	
Yh	1.70	1.23	1.59	1.19	1.43	1.48	1.56	2.04	1.66	1.21	
Lu	0.31	0.21	0.29	0.20	0.22	0.23	0.23	0.33	0.29	0.22	
Hf	4.70	3.59	3.92	4.03	4.71	4.41	3.89	3.79	3.13	4.29	
Та	0.78	0.49	0.71	0.77	0.79	0.83	0.79	1.24	1.32	0.61	
Th	14.85	11.32	14.13	11.87	14.54	14.22	12.96	14.75	10.62	11.40	
U	4.97	2.87	4.38	2.47	2.25	2.94	2.14	2.55	2.23	2.94	
а	0.30	0.20	0.28	0.20	0.18	0.20	0.18	0.36	0.39	0.19	
b	0.18	0.11	0.18	0.10	0.10	0.14	0.12	0.22	0.22	0.13	
$(La/Yb)_n$	9.95	12.26	12.29	14.87	7.71	13.00	11.29	3.37	9.14	13.87	
Eu/Eu*	0.71	0.71	0.76	0.66	0.69	0.70	0.66	0.91	0.72	0.70	
CIA	66.27	61.93	72.21	64.86	61.01	59.08	55.94	73.03	71.39	68.55	
ICV	1.03	1.03	1.02	0.97	1.04	1.34	1.35	1.03	0.98	1.06	

~~				Участо	ок Глубокая	падь			
Компонент	0884	0885	0886	0887	0889	0890	0891	0893	0894
SiO ₂ , мас. %	77.01	72.34	59.41	77.12	69.79	62.13	76.58	61.96	68.96
TiO ₂	0.40	0.84	0.78	0.45	0.69	0.85	0.44	0.81	0.61
Al ₂ O ₃	9.00	10.95	18.04	10.59	13.05	17.65	11.10	16.75	12.75
Fe ₂ O ₃	0.77	1.05	2.21	0.90	1.92	1.43	0.41	1.06	1.58
FeO	4.19	5.90	4.67	2.62	4.40	5.14	3.13	6.83	4.24
Fe ₂ O _{3 tot}	-	-	-	-	-	-	-	-	-
MnO	0.05	0.07	0.06	0.05	0.07	0.03	0.04	0.07	0.07
MgO	2.66	2.42	3.49	1.59	2.05	2.50	1.22	2.90	2.04
CaO	0.64	0.46	0.58	0.56	0.56	0.56	0.56	0.52	1.56
Na ₂ O	2.25	1.40	1.36	2.35	2.64	1.75	2.80	3.03	1.93
K ₂ O	0.67	1.57	3.87	1.48	1.67	3.55	1.38	2.22	2.08
P_2O_5	0.06	0.08	0.15	0.10	0.14	0.15	0.10	0.16	0.12
П.П.П.	2.59	3.23	5.13	2.31	2.83	4.04	1.58	3.57	2.61
H ₂ O	0.12	0.14	0.17	0.02	0.05	0.08	н. оо.	0.11	0.14
	H. 00.	H. 00. 100 45	H. 00.	H. 00.	0.11	H. 00.	0.55	H. 00.	0.94
Сумма	100.41	100.43	99.92	7	99.97	12	99.07	99.99 04	99.05
Ni	0 /1	10 56	82	32	21 70	68	46	83	63
Sc	41 Q	18	23	11	23	35	40	33	19
V	94	140	160	92	140	200	89	170	120
Ċr	65	84	100	68	120	140	97	130	120
Rb	27	62	150	57	71	155	58	92	87
Sr	41	28	48	52	50	53	62	88	100
Y	12	15	22	12	19	25	14	18	14
Zr	132	173	185	154	139	160	117	156	149
Nb	6	8	10	6	9	12	6	9	7
Ba	185	141	689	174	188	1728	1295	589	362
La	23.29	12.73	28.66	21.62	27.47	30.89	22.13	24.49	22.60
Ce	39.66	33.58	50.31	39.54	49.61	57.17	40.81	49.24	43.09
Pr	4.68	2.86	6.38	4.46	5.81	6.78	4.72	5.59	4.68
Nd	18.01	11.50	25.59	17.00	23.89	28.17	18.59	19.22	16.09
Sm	3.35	2.52	4.78	2.88	4.30	5.13	3.29	3.78	3.09
Eu	0.72	0.47	0.98	0.51	0.80	1.23	0.81	0.87	0.75
Gd	2.13	2.02	3.80	2.16	2.94	3.76	2.40	3.69	2.90
Tb	0.29	0.33	0.56	0.31	0.48	0.60	0.35	0.58	0.43
Dy	1.84	2.26	3.61	2.01	3.08	3.97	2.31	3.46	2.68
H0 E	0.37	0.50	0.69	0.43	0.59	0.78	0.47	0.67	0.53
Er Tm	1.07	1.40	1.98	1.22	1./1	2.19	1.35	1.85	1.49
1 III Vh	0.10	0.22	0.30	0.18	0.24	0.54	0.20	0.27	0.22
10	0.18	0.22	0.32	0.20	1.40	0.33	0.21	0.20	0.22
Lu Hf	3 50	0.22 1.61	0.32 4 87	4.10	3.93	4.55	3 25	4.08	3.86
Та	0.32	0.43	0.55	2.17	0.43	0.74	0.25	0.88	0.69
Th	10.79	11.84	11.26	11.33	11.33	13.68	9.13	11.51	9,88
U	1.35	2.57	2.57	2.17	2.41	3.50	2.14	2.42	1.67
a	0.14	0.18	0.36	0.16	0.22	0.33	0.17	0.32	0.22
b	0.15	0.17	0.20	0.10	0.15	0.17	0.09	0.20	0.16
$(La/Yb)_n$	14.07	6.25	10.20	12.49	12.05	10.19	12.16	8.68	9.43
Eu/Eu*	0.83	0.65	0.71	0.63	0.69	0.87	0.89	0.72	0.77
CIA	61.69	69.35	70.69	62.02	64.54	69.52	60.93	66.78	60.68
ICV	1.48	1.16	1.04	1.10	1.11	0.91	0.99	1.04	1.19

	Участок Тытери											
Компонент	05005	05006	05007	05009	05010	05011	1016	1017	1018			
SiO ₂ , мас. %	71.48	65.35	70.93	72.30	75.69	69.01	70.82	74.07	75.30			
TiO ₂	0.65	0.64	0.54	0.51	0.44	0.54	0.59	0.54	0.53			
Al ₂ O ₃	12.37	13.17	11.39	12.23	9.75	13.02	14.20	11.37	10.50			
Fe ₂ O ₃	-	-	-	-	-	-	0.48	0.47	0.48			
FeO	-	-	-	-	-	-	4.30	3.16	3.73			
Fe ₂ O _{3 tot}	6.18	6.31	5.55	4.61	5.26	5.22	-	-	-			
MnO	0.05	0.07	0.10	0.05	0.07	0.04	0.04	0.04	0.04			
MgO	1.44	2.45	1.15	1.50	1.28	1.86	2.09	1.57	1.72			
CaO	0.56	2.16	2.24	1.44	1.21	1.64	0.41	1.00	0.83			
Na ₂ O	2.81	3.72	1.88	4.13	2.69	3.37	3.36	4.00	2.64			
K ₂ O	1.83	1.50	1.79	1.07	1.07	1.09	2.92	1.91	1.88			
P_2O_5	0.07	0.05	0.06	0.08	0.06	0.09	0.12	0.09	0.09			
П.П.П.	2.96	4.73	4.73	2.38	2.46	3.85	2,26	1.78	2.24			
H ₂ O ⁻	н. об.	н. об.	н. об.	н. об.	н. об.	н. об.	0.13	0.07	0.02			
CO_2	н. об.	н. об.	н. об.	н. об.	н. об.	н. об.	0.10	0.40	0.31			
Сумма	100.40	100.14	100.35	100.30	99.98	99.73	99.56	100.47	100.31			
Со, г/т	13	16	12	15	9	11	8	8	6			
N1	52	56	35	44	31	38	31	46	20			
Sc	18	20	17	13	10	10	6	5	72			
V Cr	30 110	120	100	69 52	50	84	59	54	12			
	110	90	57	55 50	50	15	74	61	87			
RU S.	81 52	45	80 67	39	47	33 60	74 56	50	90			
SI V	13	11	13	00 21	12	24	50	50 17	14			
1 7r	153	111	13	146	104	159	152	17	14			
Nh	7	12	6	7	5	9	11	8	7			
Ba	318	473	425	203	158	195	483	337	214			
La	27.34	21.27	24.39	59.14	21.63	37.07	12.78	35.20	41.87			
Ce	52.36	43.59	46.54	106.20	39.55	71.15	28.74	66.26	75.97			
Pr	5.93	5.70	5.28	11.66	4.49	7.95	3.45	7.43	8.19			
Nd	21.75	19.11	19.81	42.42	16.42	29.71	12.68	25.71	27.62			
Sm	4.09	3.83	3.89	7.23	3.19	5.77	2.40	4.53	4.53			
Eu	0.59	0.66	0.65	1.26	0.75	0.72	0.41	0.65	0.64			
Gd	2.42	2.65	2.35	4.30	2.05	3.62	1.91	3.88	3.93			
Tb	0.41	0.39	0.40	0.65	0.34	0.65	0.26	0.55	0.49			
Dy	2.41	2.29	2.45	3.82	2.08	3.94	1.57	3.07	2.73			
Но	0.52	0.48	0.53	0.74	0.43	0.86	0.34	0.62	0.53			
Er	1.41	1.34	1.38	1.93	1.19	2.32	0.95	1.68	1.39			
Tm	0.21	0.22	0.20	0.28	0.17	0.32	0.16	0.26	0.22			
Yb	1.34	1.52	1.31	1.64	1.06	1.85	0.94	1.58	1.37			
Lu	0.24	0.22	0.24	0.27	0.18	0.30	0.16	0.24	0.22			
Ht	4.48	3.70	4.06	4.27	3.28	4.92	4.32	4.44	4.23			
Ta	0.75	1.23	0.63	1.05	0.65	1.03	1.32	0.96	0.15			
In	14.00	11.45	14.06	21.95	18.61	21.31	2 47	22.92	23.28			
0	2.89	2.71	2.79	0.13	2.90	4.09	0.24	0.19	0.16			
u h	0.20	0.24	0.19	0.20	0.15	0.22	0.24	0.18	0.10			
$(Ia/Yh)_{n}$	13.18	9.03	12.07	23.28	13.24	12.94	8.80	14 42	19.12			
Eu/Eu*	0.58	0.64	0.67	0.70	0.91	0.49	0.60	0.48	0.47			
CIA	61.88	53.02	55.58	53.64	55.61	57.29	60.08	52.07	57.11			
ICV	1.30	1.72	1.43	1.50	1.53	1.16	1.11	1.36	1.26			

			Участок Ма	лая Иликта			Участок Онгурен			
Компонент	2204	2205	2206	2207	2208	2210	2132	2133	2135	
SiO ₂ , мас. %	67.53	68.37	57.40	57.74	78.00	58.40	72.70	64.28	72.65	
TiO ₂	0.57	0.69	0.85	0.79	0.56	0.76	0.65	0.76	0.65	
Al ₂ O ₃	12.33	12.36	19.05	18.34	10.01	18.34	11.69	15.43	11.68	
Fe ₂ O ₃	3.64	2.60	1.59	1.66	1.52	1.78	1.38	2.31	1.71	
FeO	2.02	3.05	7.27	7.51	2.87	7.36	4.42	5.01	4.24	
Fe ₂ O _{3 tot}	-	-	-	-	-	-	-	-	-	
MnO	0.08	0.10	0.09	0.09	0.02	0.09	0.06	0.08	0.06	
MgO	1.32	1.65	3.42	2.93	1.15	3.17	1.84	2.61	1.78	
CaO	6.84	4.25	0.83	0.75	0.28	0.67	0.62	0.80	0.70	
Na ₂ O	2.98	3.82	1.45	1.48	2.14	1.37	1.51	2.04	1.33	
K ₂ O	0.32	0.51	3.91	3.80	1.77	3.62	2.39	2.99	2.41	
P_2O_5	0.10	0.12	0.10	0.11	0.05	0.13	0.08	0.11	0.09	
п.п.п.	1.34	2.00	4.21	4.33	1.70	4.30	2.28	3.22	2.31	
H ₂ O ⁻	н. об.	н. об.	0.02	н. об.	н. об.	н. об.	0.04	0.08	0.06	
CO ₂	0.70	0.59	н. об.	н. об.	0.06	н. об.	0.10	0.11	0.11	
Сумма	99.77	100.11	100.19	99.53	100.13	99.99	99.76	99.83	99.78	
Со, г/т	11	20	24	24	12	27	12	23	17	
NI S.	38	40	89	69	39	70	32	03	4/	
SC	14	13	21	20	15	21	14	21	10	
v Cr	130	110	190	150	100	150	130	160	120	
CI Rh	21	24	207	213	80	102	85	111	95	
Sr.	396	301	56	75	63	60	57	80	57	
Y	22	21	19	23	16	22	14	18	17	
Zr	150	229	113	121	153	110	153	137	168	
Nb	8	9	12	12	8	11	8	9	8	
Ba	60	142	827	753	470	598	478	624	493	
La	31.62	37.07	34.97	35.65	22.51	34.12	19.26	19.72	17.30	
Ce	61.84	70.46	68.67	71.56	46.90	70.60	36.81	40.91	47.75	
Pr	6.64	8.02	7.84	8.28	4.83	7.93	4.54	4.88	4.07	
Nd	24.15	28.70	28.63	30.71	18.26	29.93	15.96	17.48	14.57	
Sm	4.88	5.46	5.61	6.02	3.47	5.85	3.23	3.87	3.18	
Eu	0.98	0.99	1.02	1.21	0.73	1.19	0.65	0.89	0.69	
Gd	4.23	4.40	4.39	5.14	2.89	5.00	2.63	3.34	2.91	
Tb	0.61	0.66	0.64	0.76	0.41	0.73	0.43	0.56	0.45	
Dy	3.52	3.68	3.72	4.27	2.57	4.29	2.61	3.41	2.83	
Но	0.74	0.74	0.70	0.86	0.54	0.85	0.54	0.65	0.58	
Er	1.94	1.92	1.98	2.30	1.61	2.28	1.48	1.81	1.75	
Tm	0.29	0.28	0.30	0.35	0.27	0.34	0.23	0.27	0.27	
Yb	1.89	1.99	1.96	2.19	1.91	2.31	1.48	1.74	1.70	
	0.28	0.32	0.28	0.33	0.26	0.35	0.21	0.24	0.26	
HI To	4.06	0.20	5.54	3.05	4.26	3.33	3.80	5.00	4.51	
1a Th	0.00	16 20	0.97	0.95	0.05	0.91	0.72	0.84	0.80	
111 T	12.30	10.39 2 71	2 46	2 66	12.29	2 86	3.02	12.30	2 35	
0	0.22	0.21	0.30	0.37	0.15	0.37	0.10	0.28	0.10	
h	0.22	0.21	0.23	0.22	0.09	0.23	0.14	0.28	0.19	
$(La/Yb)_n$	10.84	12.04	11.57	10.54	7.64	9.58	8.40	7.34	6.59	
Eu/Eu*	0.67	0.63	0.63	0.67	0.71	0.68	0.69	0.76	0.70	
CIA	41.08	45.91	70.10	69.86	62.74	71.28	65.35	65.72	65.81	
ICV	1.95	1.72	0.99	0.95	1.05	0.96	1.08	1.11	1.07	

Примечание. Белые столбцы – содержания химических элементов в песчаниках, серые – в сланцах. Сокращения: н.о. – оксид не определялся, не об – оксид не обнаружен. Рассчитанные параметры: $a = Al_2O_3/SiO_2$, $b = F_2O_3+FeO+MnO+MgO+CaO$ (содержания оксидов в ат. кол.) (Неелов, 1980). Eu/Eu* = Eu_n/($\sqrt{(Sm_n \times Gd_n)}$), n – значения нормированы по составу хондрита (Wakita et al., 1970). CIA = $(Al_2O_3/(Al_2O_3+CaO*+Na_2O+K_2O))*100$, где CaO* – содержание CaO в силикатных минералах (Nesbitt, Young, 1982), ICV = $(CaO+K_2O+Na_2O+Fe_2O_3+MgO+MnO+TiO_2)/Al_2O_3$ (Cox, Lowe, 1995) в мол. кол-вах.

Приложение 3.

свиты

_															
	SiO2	TiO2	Al2O3	Fe2O3	FeO	MnO	MgO	CaO	Na2O	K2O	P2O5	H2O	CO2	п.п.п.	Сумма
	57.53	1.06	21.84	2.23	6.10	0.09	1.63	0.02	0.17	5.20	0.07	0.03	0.29	3.96	100.22
	Rb	Ba	Sr	Y	Zr	Hf	Nb	La	Ce	Pr	Nd	Sm	Eu		
	241.04	929.44	34.97	55.78	325.4	8.64	33.99	88.23	186.5	20.59	73.37	13.51	2.16	_	
	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	Th	U	Ni	Co	Sc		
	10.98	1.63	9.22	1.92	5.25	0.79	4.72	0.71	26.34	6.81	26.63	20.13	19		

Химический состав (окислы в мас. %, редкие и редкоземельные элементы в г/т) кварц-серицит-хлоритового сланца анайской

Приложение 4.

Sm-Nd изотопные данные для метаморфических пород, ранее относимых к харгитйской свите

Образец	Порода	орода Возраст, Sm Nd млн лет (г/т) ¹⁴⁷ Sm/ ¹⁴⁴ Nd		¹⁴³ Nd/ ¹⁴⁴ Nd ±2σ	end(t)	Т _{Nd} (DM), млн лет	T _{Nd} (DM-2st), млн лет		
					І группа				
2109	Лейкократовый гнейс	2500	0.97	7.47	0.0800	0.510413 ± 14	-5.9	3102	3358
					ІІ группа				
2115	Слюдисто- кварцевый сланец	1950	0.58	2.79	0.1281	0.511390 ± 13	-7.2	3117	3017
2147	Слюдисто- кварцевый сланец	1950	1.36	7.56	0.1112	0.511156 ± 15	-7.5	2950	3044
	·				Ш группа			·	·
2155	Слюдисто- кварцевый сланец	720	1.73	10.08	0.1063	0.511294 ± 13	-17.9	2624	2900
21108	Кварцит	720	0.81	4.24	0.1181	0.511514 ± 15	-14.7	2599	2637

Примечание. Для расчетов єNd(t) и TNd(DM-2st) использован минимальный возраст пород

Приложение 5.

Результаты U-Pb LA–ICP–MS анализа зерен обломочного циркона из пород харгитуйской, иликтинской и анайской свит

				Изотопные от	ношения					Возраст, мл	ін лет			
N₂	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	1σ	²⁰⁷ Pb/ ²³⁵ U	1σ	²⁰⁶ Pb/ ²³⁸ U	1σ	²⁰⁷ Pb/ ²⁰⁶ Pb	1σ	²⁰⁷ Pb/ ²³⁵ U	1σ	²⁰⁶ Pb/ ²³⁸ U	1σ	D, %
					2109 (xa	аргитуйская с	вита, I гру	ппа)					•	
2109_1	0.69	0.2208	0.0015	17.4561	0.1105	0.5712	0.0041	2985	11	2960	112	2912	26	2
2109_10	0.51	0.22	0.0018	17.6801	0.1195	0.5776	0.0044	2980	12	2972	121	2939	28	1
2109_100	0.50	0.2131	0.017	16.2552	1.4314	0.5573	0.0093	2925	129	2891	1453	2855	59	2
2109_101	0.43	0.2441	0.0193	21.3628	1.8608	0.6236	0.0105	3145	125	3155	1889	3124	67	0
2109_102	0.52	0.2215	0.0176	18.2872	1.594	0.5798	0.0106	2990	127	3004	1618	2947	68	1
2109_103	0.31	0.2083	0.0168	13.9839	1.2353	0.4935	0.0135	2890	131	2748	1254	2585	87	10
2109_104	0.45	0.2127	0.0169	16.072	1.4005	0.5532	0.0086	2925	128	2881	1422	2838	55	2
2109_105	0.50	0.1943	0.0154	9.6313	0.8372	0.3403	0.0061	2775	130	2400	850	1888	39	31
2109_106	0.13	0.2129	0.0179	12.8387	1.1314	0.4679	0.0162	2925	135	2667	1148	2474	104	15
2109_107	0.13	0.1847	0.0153	11.0106	0.9982	0.4605	0.0127	2690	136	2524	1013	2441	81	9
2109_108	0.78	0.2095	0.0166	14.8081	1.3042	0.5106	0.0082	2900	128	2802	1324	2659	52	8
2109_109	0.15	0.2066	0.0163	15.37	1.3384	0.5208	0.0084	2875	128	2838	1358	2702	54	6
2109_11	0.43	0.2099	0.0027	13.9426	0.3144	0.4949	0.0115	2900	20	2745	319	2591	74	10
2109_110	0.97	0.2222	0.0177	17.2131	1.4989	0.5762	0.0118	2995	127	2946	1521	2933	75	2
2109_111	0.58	0.2149	0.017	18.4898	1.6109	0.5834	0.0111	2940	128	3015	1635	2962	71	0
2109_112	0.35	0.2063	0.0164	16.9755	1.4763	0.5639	0.0114	2875	129	2933	1498	2882	73	0
2109_113	0.28	0.2438	0.0194	23.6571	2.0615	0.6607	0.0113	3140	126	3254	2093	3269	72	-4
2109_114	0.25	0.2108	0.0167	17.1132	1.4973	0.5702	0.0095	2910	128	2941	1520	2908	60	0
2109_115	0.12	0.2087	0.0165	16.1495	1.409	0.5584	0.0092	2890	128	2885	1430	2860	59	1
2109_116	0.57	0.1947	0.0155	10.0629	0.8787	0.3671	0.0059	2780	130	2440	892	2015	37	27
2109_117	0.85	0.156	0.0126	10.6436	0.9336	0.4766	0.0088	2410	136	2492	947	2512	56	-4
2109_12	0.23	0.2209	0.0016	17.1331	0.1302	0.5622	0.0051	2985	11	2942	132	2875	32	3
2109_120	0.22	0.1949	0.0156	10.2714	0.8953	0.3631	0.0064	2780	131	2459	909	1997	41	28
2109_121	0.51	0.2163	0.0173	18.44	1.6095	0.5826	0.0103	2950	129	3012	1634	2959	66	0

				Изотопные от	ношения					Возраст, мл	ін лет			D %
N≌	Th/U	207Pb/206Pb	1σ	207Pb/235U	1σ	206Pb/238U	1σ (abs)	207Pb/206Pb	1σ	207Pb/235U	1σ	206Pb/238U	1σ	D, 70
2109_122	0.49	0.2102	0.0167	16.8406	1.4609	0.5705	0.0083	2905	128	2925	1483	2909	53	0
2109_124	0.37	0.1939	0.0034	12.5123	0.2472	0.4399	0.0096	2775	29	2643	250	2350	62	15
2109_125	0.29	0.1878	0.0034	14.9426	0.3085	0.5419	0.0111	2720	29	2811	313	2791	71	-2
2109_126	0.35	0.1858	0.005	14.6013	0.4913	0.5326	0.0131	2700	44	2789	498	2752	84	-1
2109_127	0.13	0.1776	0.0046	10.0436	0.3261	0.386	0.013	2630	43	2438	331	2104	83	19
2109_128	0.39	0.2018	0.0036	16.2909	0.3677	0.5814	0.0136	2835	28	2894	373	2954	87	-4
2109_129	0.19	0.201	0.004	14.2302	0.3775	0.5399	0.014	2830	32	2765	383	2783	90	1
2109_13	0.22	0.218	0.003	15.8874	0.1881	0.5431	0.0072	2965	22	2870	190	2796	46	5
2109_14	0.05	0.1906	0.0014	11.4432	0.1378	0.4326	0.0058	2745	11	2559	139	2317	37	15
2109_15	0.05	0.1921	0.0023	12.2521	0.1808	0.4631	0.0056	2755	19	2623	183	2453	36	10
2109_16	0.55	0.2237	0.0018	18.5645	0.1456	0.6015	0.0051	3005	12	3019	147	3035	32	-1
2109_17	0.41	0.2045	0.0014	11.0348	0.1426	0.3879	0.0052	2860	11	2526	144	2113	33	26
2109_18	0.26	0.2137	0.0016	15.8486	0.2231	0.5233	0.0075	2930	12	2867	226	2713	48	7
2109_19	0.09	0.1849	0.0013	9.3425	0.0784	0.3638	0.0029	2695	11	2372	79	2000	19	25
2109_2	0.55	0.2364	0.0017	18.9272	0.2907	0.5723	0.0086	3095	11	3038	295	2917	55	5
2109_20	0.24	0.2028	0.0053	8.9878	0.1577	0.3404	0.0079	2845	42	2336	160	1888	50	33
2109_21	0.73	0.2366	0.0023	19.3575	0.2374	0.5936	0.0073	3095	15	3059	241	3003	47	2
2109_22	0.20	0.2247	0.0019	16.9719	0.1989	0.5494	0.0069	3010	13	2933	201	2822	44	6
2109_23	0.11	0.205	0.0013	14.2075	0.1521	0.5003	0.0051	2865	10	2763	154	2615	33	8
2109_24	0.50	0.2219	0.0018	16.0649	0.1296	0.5194	0.005	2990	13	2880	131	2696	32	9
2109_25	0.23	0.1854	0.0015	10.2674	0.2176	0.3908	0.007	2700	13	2459	220	2126	44	21
2109_26	0.80	0.2231	0.0035	17.8593	0.2738	0.5979	0.0096	3000	24	2982	277	3021	62	0
2109_27	0.74	0.223	0.0019	18.0765	0.163	0.5887	0.006	3000	13	2993	165	2984	38	0
2109_28	0.29	0.2033	0.0016	15.4752	0.1941	0.5614	0.0066	2850	12	2844	197	2872	42	0
2109_29	0.39	0.218	0.0019	15.198	0.166	0.5065	0.0063	2965	13	2827	168	2641	40	10
2109_3	0.41	0.2134	0.0029	13.8719	0.162	0.4887	0.0086	2930	21	2740	164	2564	55	12
2109_30	0.13	0.2052	0.0028	10.4111	0.1332	0.3818	0.0061	2865	22	2472	135	2084	39	27

Na	Th/II			Изотопные от	ношения					Возраст, мл	ін лет			D, %
J12	11/0	207Pb/206Pb	1σ	207Pb/235U	1σ	206Pb/238U	1σ	207Pb/206Pb	1σ	207Pb/235U	1σ	206Pb/238U	1σ	-
2109_31	0.25	0.2087	0.0029	12.7381	0.1896	0.4541	0.0063	2890	22	2660	192	2413	40	16
2109_32	0.40	0.1831	0.0037	6.7266	0.2202	0.2805	0.0085	2680	33	2076	223	1593	54	40
2109_33	0.40	0.2146	0.0014	15.0854	0.1183	0.5076	0.0052	2935	10	2820	120	2646	33	9
2109_34	0.15	0.1394	0.0011	6.4589	0.0529	0.3362	0.0033	2215	13	2040	53	1868	21	15
2109_35	0.15	0.211	0.0025	16.3808	0.1999	0.5793	0.009	2910	19	2899	202	2945	58	-1
2109_36	0.16	0.2016	0.0019	12.6137	0.3009	0.4483	0.0099	2835	15	2651	305	2387	63	15
2109_37	0.31	0.1705	0.0021	6.0707	0.098	0.268	0.0037	2560	20	1986	99	1530	23	40
2109_38	0.87	0.2212	0.0023	18.3058	0.2003	0.6142	0.0081	2985	16	3005	203	3086	52	-3
2109_39	0.09	0.1994	0.0026	13.1455	0.3401	0.4706	0.0109	2820	21	2690	345	2486	70	11
2109_4	0.48	0.2222	0.0033	17.8942	0.246	0.6124	0.0106	2995	23	2984	249	3079	68	-2
2109_40	0.57	0.2193	0.0019	18.4939	0.1638	0.6086	0.0064	2975	14	3015	166	3064	41	-2
2109_41	0.43	0.2081	0.0017	13.1931	0.2223	0.4545	0.0064	2885	13	2693	225	2415	41	16
2109_42	0.46	0.2192	0.0034	15.9186	0.2144	0.5403	0.0102	2970	24	2871	217	2784	66	6
2109_43	0.35	0.213	0.0025	14.9694	0.1496	0.5176	0.0072	2925	18	2813	151	2689	46	8
2109_44	0.37	0.2038	0.0023	10.7951	0.1369	0.3898	0.0062	2855	18	2505	139	2121	40	25
2109_45	0.67	0.2136	0.0021	16.059	0.1582	0.5459	0.0058	2930	15	2880	160	2807	37	4
2109_46	0.45	0.2167	0.0036	17.2439	0.2398	0.5948	0.0114	2955	26	2948	243	3008	73	-1
2109_47	0.20	0.2045	0.0022	16.2116	0.2876	0.5896	0.0092	2860	17	2889	292	2987	59	-4
2109_48	0.38	0.2199	0.004	14.754	0.4231	0.5199	0.0181	2975	29	2799	429	2698	116	9
2109_49	0.74	0.2437	0.003	18.6902	0.2488	0.5605	0.0074	3140	19	3025	252	2868	47	8
2109_5	0.54	0.204	0.0038	10.0991	0.167	0.3809	0.0085	2855	30	2443	169	2080	54	27
2109_50	0.02	0.1821	0.0026	9.1776	0.1579	0.3677	0.007	2670	23	2355	160	2018	45	24
2109_51	0.32	0.1965	0.002	10.9442	0.1257	0.4082	0.0067	2795	16	2518	127	2206	42	21
2109_52	0.53	0.2006	0.0021	12.4634	0.175	0.4567	0.0088	2830	17	2639	177	2424	56	14
2109_53	0.22	0.2003	0.0031	10.5788	0.1488	0.3941	0.006	2825	25	2486	151	2141	38	24
2109_54	0.58	0.2051	0.0029	14.2235	0.2508	0.5218	0.0109	2865	23	2764	254	2706	70	5
2109_55	0.37	0.2163	0.0026	17.8789	0.1829	0.5987	0.0079	2950	19	2983	185	3024	50	-2
2109_56	0.12	0.2112	0.002	13.9624	0.1591	0.4764	0.0059	2910	15	2747	161	2511	38	13

Na	Th/II			Изотопные от	ношения					Возраст, мл	ін лет			D, %
JNg	11/0	207Pb/206Pb	1σ	207Pb/235U	1σ	206Pb/238U	1σ	207Pb/206Pb	1σ	207Pb/235U	1σ	206Pb/238U	1σ	-
2109_57	0.61	0.2393	0.0024	19.9536	0.1987	0.6048	0.0079	3110	15	3089	201	3048	50	1
2109_58	0.13	0.2102	0.0022	13.0648	0.1466	0.4568	0.005	2905	17	2684	148	2425	31	16
2109_59	0.07	0.1937	0.0025	13.4296	0.2823	0.5172	0.012	2770	21	2710	286	2687	77	2
2109_60	0.20	0.2116	0.0056	11.4345	0.3347	0.4184	0.0124	2915	42	2559	339	2253	79	22
2109_61	0.45	0.2095	0.0032	15.185	0.2366	0.5436	0.0127	2900	24	2826	240	2798	81	3
2109_62	0.10	0.1848	0.0148	12.5233	1.1004	0.5074	0.0087	2695	131	2644	1117	2645	56	1
2109_63	0.29	0.198	0.0156	14.2464	1.2516	0.5292	0.0081	2805	129	2766	1270	2738	51	2
2109_66	0.11	0.1898	0.015	13.0111	1.13	0.4961	0.0086	2735	130	2680	1147	2597	55	5
2109_67	1.03	0.2099	0.0165	16.7788	1.4542	0.5714	0.0076	2900	127	2922	1476	2913	48	0
2109_68	0.13	0.1825	0.0144	10.9928	0.9643	0.4247	0.0065	2670	131	2522	979	2281	42	14
2109_7	0.53	0.2218	0.0039	17.4314	0.2812	0.5899	0.0098	2990	28	2958	285	2989	63	0
2109_70	0.11	0.196	0.0155	13.3484	1.1657	0.4825	0.0091	2790	129	2704	1183	2538	58	9
2109_71	0.15	0.2035	0.0165	14.8291	1.2965	0.5284	0.0131	2850	132	2804	1316	2734	84	4
2109_73	0.12	0.1964	0.0155	14.4738	1.2654	0.5111	0.0094	2795	129	2781	1284	2661	60	4
2109_74	0.79	0.1162	0.0096	5.3181	0.4722	0.3219	0.0076	1895	148	1871	479	1799	48	5
2109_74	0.70	0.2071	0.0163	17.331	1.5043	0.58	0.0082	2880	128	2953	1527	2948	53	-2
2109_76	0.61	0.2105	0.0167	18.2256	1.5848	0.5788	0.0103	2905	128	3001	1609	2944	66	-1
2109_77	0.06	0.1105	0.009	5.2135	0.4603	0.327	0.008	1805	147	1854	467	1823	51	-1
2109_78	0.43	0.2109	0.0167	18.5529	1.61	0.5938	0.0095	2910	128	3018	1634	3004	61	-3
2109_79	0.13	0.1898	0.015	9.9142	0.8627	0.3537	0.0056	2735	130	2426	875	1952	35	28
2109_8	0.19	0.222	0.0031	16.658	0.2158	0.5638	0.0103	2990	22	2915	219	2882	66	3
2109_80	0.41	0.206	0.0165	17.9333	1.563	0.5794	0.0095	2870	130	2986	1587	2946	60	-2
2109_81	0.18	0.211	0.017	18.1167	1.591	0.5761	0.0116	2910	130	2995	1615	2932	74	0
2109_84	0.17	0.2066	0.0168	16.375	1.454	0.5482	0.0168	2875	132	2898	1476	2817	108	1
2109_85	0.40	0.2007	0.016	11.4227	0.9986	0.3838	0.0071	2830	129	2558	1013	2093	45	26
2109_86	0.70	0.219	0.0173	19.9452	1.7298	0.6211	0.0094	2970	127	3088	1756	3114	60	-4
2109_89	0.05	0.1917	0.0154	15.4663	1.3724	0.5389	0.0142	2755	131	2844	1393	2778	91	0
2109_9	0.04	0.1979	0.0022	14.2021	0.3854	0.4959	0.0112	2805	17	2763	391	2595	72	7

N⁰	Th/U			Изотопные от	ношения					Возраст, мл	ін лет			D, %
		207Pb/206Pb	1σ	207Pb/235U	1σ	206Pb/238U	1σ	207Pb/206Pb	1σ	207Pb/235U	1σ	206Pb/238U	1σ	
2109_90	0.20	0.2033	0.0162	13.0372	1.1423	0.4279	0.0081	2850	129	2682	1159	2296	51	19
2109_91	0.48	0.2061	0.0163	11.9847	1.045	0.3984	0.0059	2870	128	2603	1061	2161	37	24
2109_92	0.42	0.1919	0.0153	9.0319	0.789	0.3174	0.0062	2755	131	2341	801	1777	39	35
2109_93	0.37	0.2047	0.0163	12.0852	1.0553	0.4207	0.0085	2860	129	2611	1071	2263	54	20
2109_94	0.40	0.2041	0.0161	15.8184	1.3716	0.555	0.0079	2855	128	2865	1392	2845	51	0
2109_95	0.49	0.2091	0.0168	15.6807	1.3636	0.5133	0.0118	2895	130	2857	1384	2670	75	7
2109_96	0.89	0.2048	0.0162	12.0593	1.0494	0.4119	0.0065	2860	129	2609	1065	2223	42	22
2109_98	0.12	0.2168	0.0172	17.7816	1.5454	0.578	0.0088	2955	127	2977	1569	2940	56	0
2109_99	0.51	0.2165	0.0173	17.9569	1.5663	0.5763	0.0114	2950	129	2987	1590	2933	73	0
					2115 (xa	ргитуйская св	ита, П гр	уппа)						
2115_1	0.84	0.1481	0.0024	9.6443	0.1714	0.4507	0.0082	2320	27	2401	174	2398	53	-3
2115_10	0.14	0.1576	0.0024	11.3064	0.2272	0.4877	0.0088	2425	26	2548	230	2560	57	-5
2115_100	0.43	0.1761	0.0084	11.5156	0.9786	0.4895	0.0077	2615	79	2565	993	2568	49	1
2115_101	0.47	0.1566	0.0075	9.7176	0.8234	0.4499	0.0067	2415	81	2408	836	2394	43	0
2115_102	0.44	0.158	0.0076	9.5747	0.811	0.4479	0.0067	2430	81	2394	823	2385	42	1
2115_103	0.20	0.2302	0.011	19.2529	1.6256	0.6069	0.0091	3050	76	3054	1650	3057	58	0
2115_104	0.79	0.1554	0.0075	9.5132	0.8046	0.4471	0.0069	2405	81	2388	816	2382	44	0
2115_105	0.27	0.2461	0.0118	19.9033	1.6849	0.6102	0.0096	3155	76	3086	1710	3070	62	2
2115_106	1.09	0.1881	0.009	13.748	1.1535	0.5267	0.008	2720	79	2732	1171	2727	51	0
2115_107	0.67	0.1715	0.0082	11.6131	0.9648	0.4915	0.0072	2570	79	2573	979	2577	46	0
2115_108	0.54	0.1516	0.0072	9.639	0.793	0.4518	0.0067	2360	81	2400	805	2403	42	-1
2115_109	0.37	0.1456	0.0067	9.2046	0.7659	0.4429	0.0066	2290	79	2358	777	2363	42	-3
2115_11	0.54	0.223	0.0035	19.1583	0.3683	0.5964	0.0112	3000	25	3049	373	3015	72	0
2115_110	0.55	0.144	0.0069	9.1539	0.7666	0.4405	0.0067	2275	82	2353	778	2353	42	-3
2115_111	0.46	0.1492	0.0072	9.7761	0.8203	0.4557	0.0069	2335	82	2413	832	2420	44	-3
2115_112	0.33	0.1418	0.0068	8.9799	0.7555	0.4375	0.0066	2245	83	2335	767	2339	42	-4
2115_113	0.98	0.1436	0.007	9.3849	0.7958	0.4482	0.0072	2265	84	2376	808	2387	46	-5

Nº	Th/U			Изотопные от	ношения					Возраст, мл	ін лет			D, %
		207Pb/206Pb	1σ	207Pb/235U	1σ	206Pb/238U	1σ	207Pb/206Pb	1σ	207Pb/235U	1σ	206Pb/238U	1σ	-
2115_114	0.35	0.1438	0.0069	8.9337	0.7598	0.436	0.0067	2270	83	2331	771	2332	42	-2
2115_115	0.56	0.1426	0.007	9.5104	0.8116	0.4536	0.0075	2255	84	2388	824	2411	48	-6
2115_116	0.10	0.1844	0.0088	13.7723	1.1677	0.5278	0.008	2690	79	2734	1185	2732	51	-1
2115_117	0.35	0.1568	0.0082	11.6319	0.9972	0.5068	0.0109	2420	88	2575	1012	2643	70	-9
2115_118	0.58	0.1525	0.0073	10.8998	0.9346	0.5107	0.0077	2370	81	2514	948	2659	49	-12
2115_119	0.71	0.1524	0.0079	9.1085	0.791	0.4458	0.0078	2370	88	2348	803	2376	50	0
2115_12	0.08	0.1767	0.0029	7.2806	0.125	0.2818	0.0051	2620	27	2146	126	1600	33	38
2115_120	0.48	0.1448	0.0071	9.8385	0.8366	0.4616	0.0076	2280	84	2419	849	2446	48	-7
2115_121	0.47	0.1462	0.0072	10.0006	0.8543	0.4639	0.0082	2300	84	2434	867	2456	52	-6
2115_122	0.53	0.1482	0.0071	9.7999	0.8365	0.4566	0.0069	2320	82	2416	849	2424	44	-4
2115_123	0.54	0.1439	0.0069	8.9189	0.7543	0.4368	0.0066	2270	82	2329	765	2336	42	-2
2115_124	0.67	0.1491	0.0072	10.0525	0.8559	0.4625	0.0072	2330	82	2439	869	2450	46	-5
2115_125	0.35	0.1558	0.0075	10.7519	0.9082	0.4731	0.0076	2405	81	2501	922	2497	49	-3
2115_126	0.52	0.1866	0.009	15.0111	1.2841	0.55	0.0086	2710	79	2815	1303	2825	55	-4
2115_127	0.61	0.1294	0.0062	6.8477	0.5858	0.383	0.0057	2085	84	2091	594	2090	36	0
2115_128	0.48	0.1564	0.0075	9.8128	0.8382	0.4517	0.0069	2415	80	2417	851	2402	44	0
2115_129	0.51	0.1539	0.0074	9.4132	0.8004	0.4446	0.0067	2385	81	2379	812	2371	43	0
2115_130	0.32	0.1546	0.0074	8.441	0.7209	0.4212	0.0066	2395	81	2279	731	2265	42	5
2115_131	0.10	0.1589	0.0076	10.0291	0.8511	0.458	0.0067	2440	81	2437	864	2430	43	0
2115_132	0.31	0.2409	0.0116	18.4156	1.5616	0.588	0.01	3125	76	3011	1585	2981	64	4
2115_133	0.48	0.161	0.0077	9.5955	0.8112	0.4485	0.0067	2465	80	2396	823	2388	43	3
2115_134	0.15	0.1573	0.0075	7.7274	0.6527	0.3747	0.006	2425	81	2199	662	2051	38	15
2115_135	0.34	0.161	0.0077	10.8156	0.915	0.4761	0.0073	2465	80	2507	929	2510	46	-1
2115_136	0.21	0.1578	0.0076	9.5967	0.8077	0.4462	0.0067	2430	81	2396	820	2378	43	2
2115_137	0.67	0.2201	0.0108	17.1426	1.4717	0.5801	0.01	2980	78	2942	1494	2949	64	1
2115_138	0.86	0.1428	0.007	9.7662	0.8347	0.456	0.0087	2260	84	2412	847	2421	55	-7
2115_139	0.55	0.1503	0.0073	10.3309	0.8764	0.4636	0.0076	2345	82	2464	889	2455	48	-4
2115_14	0.52	0.1668	0.0029	11.8942	0.2221	0.4938	0.01	2520	29	2596	225	2587	64	-2

No	Th/II			Изотопные от	ношения					Возраст, мл	ін лет			D, %
J12	11/0	207Pb/206Pb	1σ	207Pb/235U	1σ	206Pb/238U	1σ	207Pb/206Pb	1σ	207Pb/235U	1σ	206Pb/238U	1σ	
2115_140	0.39	0.1441	0.0069	9.6125	0.7961	0.4704	0.0069	2275	82	2398	808	2485	44	-9
2115_141	0.66	0.1635	0.008	11.8812	1.0043	0.5009	0.0091	2490	82	2595	1019	2617	58	-5
2115_142	0.44	0.1436	0.0073	10.2349	0.8824	0.47	0.0092	2270	88	2456	895	2483	59	-9
2115_143	0.58	0.1363	0.0066	8.9681	0.7593	0.4377	0.0071	2175	84	2334	770	2340	45	-7
2115_144	0.53	0.137	0.0066	8.8989	0.7567	0.4352	0.0072	2185	84	2327	768	2329	46	-6
2115_145	0.30	0.1434	0.007	9.485	0.8052	0.4489	0.0081	2265	84	2386	817	2390	52	-5
2115_146	0.51	0.2077	0.0102	17.6073	1.5066	0.5885	0.0102	2885	79	2968	1529	2983	66	-3
2115_15	0.41	0.2068	0.009	11.2998	0.3726	0.4693	0.0189	2880	70	2548	378	2480	121	13
2115_16	0.48	0.1727	0.0029	12.5044	0.2723	0.5077	0.0112	2580	28	2643	276	2646	71	-2
2115_17	0.56	0.1747	0.0033	13.1598	0.2838	0.5217	0.0109	2600	31	2691	288	2706	70	-4
2115_18	0.39	0.2108	0.0035	18.5335	0.3562	0.5998	0.0109	2910	26	3017	361	3029	70	-4
2115_19	0.54	0.1443	0.0023	9.5847	0.1766	0.4517	0.0084	2275	26	2395	179	2402	54	-5
2115_2	0.29	0.1483	0.0024	8.9302	0.1668	0.4309	0.0081	2325	27	2330	169	2309	51	0
2115_20	0.90	0.2212	0.0034	19.38	0.3447	0.6033	0.0114	2985	25	3060	350	3042	73	-1
2115_21	0.66	0.156	0.0049	10.1148	0.2966	0.4671	0.0126	2410	53	2445	301	2470	81	-2
2115_22	0.79	0.1469	0.0025	9.8317	0.1835	0.4595	0.0089	2305	29	2419	186	2437	57	-5
2115_23	0.47	0.1489	0.0023	9.6605	0.1682	0.4503	0.0082	2330	27	2402	170	2396	52	-2
2115_24	0.63	0.16	0.0028	9.2746	0.1683	0.4012	0.008	2450	29	2365	170	2174	51	11
2115_25	0.34	0.1474	0.0026	9.737	0.1921	0.4488	0.0087	2315	29	2410	195	2389	55	-3
2115_26	0.09	0.1516	0.0027	9.3315	0.1759	0.4434	0.0093	2360	31	2371	178	2366	60	0
2115_27	0.43	0.2268	0.0044	18.7414	0.3667	0.6014	0.0127	3025	31	3028	372	3035	82	0
2115_28	1.30	0.2009	0.0034	16.1255	0.3225	0.5675	0.0114	2830	28	2884	327	2897	73	-2
2115_29	0.76	0.1448	0.0034	8.898	0.1829	0.4248	0.01	2280	40	2327	185	2282	64	0
2115_3	0.07	0.2263	0.005	17.1743	0.428	0.5576	0.0157	3025	35	2944	434	2856	101	5
2115_30	0.55	0.1525	0.0025	9.7425	0.177	0.4522	0.0087	2370	27	2410	179	2404	55	-1
2115_31	0.91	0.1638	0.0034	10.0147	0.2291	0.45	0.0106	2490	35	2436	232	2395	68	3
2115_32	0.52	0.1994	0.0053	10.201	0.397	0.3578	0.0092	2820	43	2453	403	1971	59	30
2115_33	1.41	0.1806	0.0035	13.6459	0.2617	0.5293	0.0115	2655	32	2725	265	2738	74	-3

No	Th/II			Изотопные от	ношения					Возраст, мл	ін лет			D, %
JNG	11/0	207Pb/206Pb	1σ	207Pb/235U	1σ	206Pb/238U	1σ	207Pb/206Pb	1σ	207Pb/235U	1σ	206Pb/238U	1σ	
2115_34	0.26	0.1559	0.0025	10.8958	0.1851	0.4784	0.0087	2410	27	2514	187	2520	56	-4
2115_35	0.24	0.1435	0.0029	9.066	0.2269	0.4386	0.0096	2265	34	2344	230	2344	61	-3
2115_36	0.21	0.1479	0.0025	9.9122	0.2085	0.4605	0.0094	2320	28	2426	211	2441	60	-5
2115_37	0.10	0.1473	0.0023	9.6561	0.1723	0.4509	0.0086	2310	26	2402	174	2399	55	-3
2115_38	0.24	0.181	0.0036	14.9192	0.3455	0.5541	0.0113	2660	33	2810	350	2842	72	-6
2115_39	0.37	0.1548	0.0028	10.0766	0.201	0.4633	0.0097	2395	30	2441	204	2454	62	-2
2115_4	0.79	0.1659	0.0031	11.494	0.2272	0.4951	0.0103	2515	30	2564	230	2592	66	-3
2115_40	0.99	0.2094	0.0045	16.3963	0.3878	0.5578	0.0137	2900	34	2900	393	2857	88	1
2115_41	0.41	0.144	0.0028	7.9843	0.1579	0.4079	0.0097	2275	33	2229	160	2205	62	3
2115_42	0.19	0.1127	0.0023	3.5475	0.1011	0.243	0.0062	1840	37	1537	102	1402	40	23
2115_43	0.05	0.1476	0.0053	10.1993	0.4959	0.4608	0.0138	2315	61	2453	503	2443	89	-5
2115_44	1.34	0.1812	0.0035	14.5153	0.2886	0.5469	0.0119	2660	31	2784	293	2812	76	-5
2115_45	0.35	0.1502	0.0029	9.2291	0.1841	0.4433	0.0085	2345	32	2361	186	2365	54	0
2115_46	0.50	0.1495	0.0029	9.6437	0.1817	0.4549	0.0095	2335	33	2401	184	2417	61	-3
2115_47	0.55	0.1544	0.005	9.5685	0.2937	0.4635	0.0156	2390	55	2394	298	2454	100	-2
2115_48	0.41	0.16	0.0028	11.5054	0.2064	0.488	0.0099	2455	29	2565	209	2561	63	-4
2115_49	0.29	0.146	0.0024	9.9793	0.1908	0.4643	0.0096	2295	27	2432	193	2458	62	-7
2115_5	0.58	0.1648	0.0031	10.2734	0.1924	0.457	0.0091	2500	31	2459	195	2426	58	2
2115_50	0.62	0.1648	0.004	10.1401	0.2388	0.451	0.0115	2500	40	2447	242	2399	73	4
2115_51	0.59	0.1489	0.0024	9.8807	0.1737	0.454	0.0087	2330	27	2423	176	2413	56	-3
2115_52	0.57	0.1692	0.0032	11.7789	0.2445	0.4946	0.0124	2545	31	2586	248	2590	80	-1
2115_53	0.11	0.1429	0.0028	7.0829	0.1491	0.3396	0.007	2260	33	2121	151	1884	45	16
2115_54	0.25	0.1487	0.0031	9.6525	0.276	0.4565	0.0112	2325	35	2402	280	2424	72	-4
2115_55	0.45	0.1528	0.0073	9.9912	0.8423	0.4621	0.0071	2375	81	2433	855	2448	45	-3
2115_56	0.45	0.1492	0.0072	9.5138	0.8085	0.4534	0.0077	2335	82	2388	820	2410	49	-3
2115_57	0.19	0.1571	0.0075	10.9404	0.9268	0.4815	0.0076	2420	81	2518	941	2533	48	-4
2115_58	1.19	0.1677	0.0081	12.6382	1.0692	0.5185	0.0082	2530	81	2653	1085	2692	52	-6
2115_59	0.45	0.1375	0.0066	8.8526	0.7445	0.4432	0.0065	2195	83	2322	755	2364	42	-7

No	Th/II			Изотопные от	ношения					Возраст, мл	ін лет			D, %
J12	11/0	207Pb/206Pb	1σ	207Pb/235U	1σ	206Pb/238U	1σ	207Pb/206Pb	1σ	207Pb/235U	1σ	206Pb/238U	1σ	
2115_6	1.28	0.2011	0.0048	17.22	0.3657	0.596	0.0147	2830	38	2947	371	3013	94	-6
2115_60	0.22	0.1582	0.0076	10.6788	0.901	0.5032	0.0076	2435	81	2495	914	2627	49	-7
2115_61	0.41	0.1373	0.0066	8.5497	0.7288	0.4339	0.0076	2190	83	2291	739	2323	49	-6
2115_62	0.35	0.1696	0.0081	12.786	1.0821	0.5144	0.0079	2550	80	2664	1098	2675	51	-4
2115_63	0.51	0.1366	0.0065	8.378	0.7092	0.4445	0.0066	2180	83	2272	720	2370	42	-8
2115_64	0.11	0.1436	0.0069	9.7326	0.8244	0.4601	0.0075	2270	83	2409	837	2439	48	-7
2115_65	0.66	0.14	0.0068	8.9719	0.7621	0.4442	0.0072	2225	83	2335	773	2369	46	-6
2115_66	0.44	0.1406	0.0067	8.8169	0.7471	0.4372	0.0068	2230	83	2319	758	2337	43	-4
2115_67	1.14	0.2806	0.0134	26.7644	2.2971	0.6936	0.0106	3365	74	3374	2332	3396	68	0
2115_68	0.52	0.1505	0.0073	9.2951	0.7979	0.448	0.007	2350	82	2367	810	2386	45	-1
2115_69	1.01	0.1519	0.0073	9.4506	0.8088	0.4484	0.0069	2365	82	2382	821	2388	44	0
2115_7	0.46	0.1443	0.0023	9.2435	0.1758	0.441	0.0088	2275	27	2362	178	2355	56	-3
2115_70	0.59	0.1593	0.0077	10.0223	0.8583	0.4593	0.0071	2445	81	2436	871	2436	45	0
2115_71	0.52	0.2068	0.0099	13.8803	1.1805	0.4859	0.0075	2880	77	2741	1198	2552	48	11
2115_72	0.57	0.2393	0.0114	18.8919	1.6062	0.6012	0.0092	3110	76	3036	1630	3034	59	2
2115_73	0.59	0.162	0.0078	9.7098	0.8287	0.4531	0.0076	2475	81	2407	841	2409	48	2
2115_74	0.97	0.1884	0.0093	11.1555	0.9571	0.4731	0.0088	2725	81	2536	971	2497	56	8
2115_75	0.74	0.1747	0.0084	10.2964	0.879	0.4655	0.007	2600	80	2461	892	2463	45	5
2115_76	0.93	0.2027	0.0099	17.3538	1.5316	0.584	0.0151	2845	79	2954	1555	2964	97	-4
2115_77	1.16	0.1746	0.0085	11.3084	1.0048	0.4879	0.0145	2600	81	2548	1020	2561	93	1
2115_78	0.46	0.1751	0.0084	10.8281	0.9179	0.482	0.0077	2605	80	2508	931	2535	49	2
2115_79	0.34	0.1548	0.0077	9.6245	0.8146	0.4416	0.0081	2395	84	2399	827	2357	52	1
2115_8	0.42	0.147	0.0024	9.9564	0.1703	0.4653	0.0088	2310	27	2430	172	2462	56	-6
2115_80	0.84	0.1638	0.0079	10.7293	0.904	0.4739	0.0073	2490	81	2499	917	2500	46	0
2115_81	0.32	0.1405	0.0068	7.6589	0.6455	0.4091	0.0063	2230	84	2191	655	2210	40	0
2115_82	0.31	0.1436	0.007	8.0605	0.6821	0.4185	0.0072	2270	84	2237	692	2253	46	0
2115_83	0.31	0.1913	0.0092	14.6493	1.2268	0.5484	0.0086	2750	78	2792	1245	2818	55	-2
2115_84	0.76	0.1488	0.0072	9.7926	0.8316	0.4599	0.0079	2330	83	2415	844	2439	51	-4

Na	Th/II			Изотопные от	ношения					Возраст, мл	ін лет			D, %
JNg	11/0	207Pb/206Pb	1σ	207Pb/235U	1σ	206Pb/238U	1σ	207Pb/206Pb	1σ	207Pb/235U	1σ	206Pb/238U	1σ	
2115_85	1.30	0.2209	0.011	18.516	1.5789	0.6081	0.0106	2985	80	3016	1603	3062	68	-2
2115_86	0.58	0.145	0.007	9.816	0.8349	0.4646	0.0087	2285	83	2417	847	2459	56	-7
2115_87	0.49	0.1429	0.0069	9.3464	0.7905	0.4505	0.0071	2260	83	2372	802	2397	45	-6
2115_88	0.45	0.1479	0.0071	9.8535	0.8359	0.4615	0.0072	2320	82	2421	848	2446	46	-5
2115_89	0.48	0.1451	0.007	9.8171	0.8345	0.4586	0.0079	2285	82	2417	847	2433	51	-6
2115_9	0.47	0.1537	0.0024	10.6998	0.1856	0.4793	0.0088	2385	26	2497	188	2524	56	-5
2115_90	0.24	0.1235	0.0059	5.9462	0.5053	0.3585	0.0056	2005	85	1968	513	1975	35	1
2115_91	0.63	0.1447	0.007	9.09	0.7778	0.4375	0.0065	2280	82	2347	789	2339	42	-2
2115_92	0.45	0.2099	0.0101	17.9977	1.5368	0.5948	0.0091	2900	77	2989	1560	3008	58	-3
2115_93	1.38	0.2797	0.0133	24.7513	2.1051	0.6228	0.0094	3360	74	3298	2137	3121	60	7
2115_94	0.44	0.1504	0.0072	9.2912	0.795	0.4428	0.007	2345	81	2367	807	2363	45	0
2115_95	0.95	0.1655	0.008	11.0344	0.9492	0.4807	0.0072	2510	80	2526	963	2530	46	0
2115_96	0.62	0.1705	0.0081	11.8425	1.0112	0.4995	0.0104	2560	79	2592	1026	2611	67	-2
2115_97	0.60	0.1543	0.0074	9.9659	0.8534	0.456	0.0071	2390	81	2431	866	2421	45	-1
2115_98	0.42	0.1668	0.008	10.8231	0.9228	0.4729	0.007	2520	80	2508	936	2496	45	0
2115_99	0.58	0.1618	0.0077	10.0753	0.8566	0.4577	0.0068	2470	80	2441	869	2429	43	1
	1	1			2147 (xa	ргитуйская св	ита, П гр	уппа)		T	1	I		
2147_1	0.54	0.154	0.0025	10.8676	0.1831	0.4811	0.0089	2390	27	2511	185	2532	57	-5
2147_10	0.40	0.1625	0.0027	11.8175	0.4008	0.4958	0.0147	2480	27	2590	406	2595	95	-4
2147_100	1.07	0.2115	0.0038	14.8039	0.2877	0.5153	0.0207	2915	29	2802	292	2679	133	8
2147_101	0.51	0.1943	0.0028	9.9377	0.2023	0.3794	0.0153	2775	23	2429	205	2073	98	25
2147_102	0.14	0.1531	0.0018	8.4151	0.0998	0.4093	0.0163	2380	20	2276	101	2211	104	7
2147_103	0.63	0.1663	0.0015	10.7448	0.1052	0.4682	0.0178	2520	15	2501	106	2475	114	1
2147_104	0.72	0.1905	0.0023	13.3572	0.1542	0.5085	0.0198	2745	19	2705	156	2650	127	3
2147_105	0.63	0.1714	0.0014	11.8962	0.0927	0.4965	0.0185	2570	13	2596	94	2598	119	-1
2147_106	0.64	0.1649	0.0017	10.3066	0.106	0.4536	0.0172	2505	17	2462	107	2411	110	3
2147_107	0.78	0.2	0.0031	13.7973	0.2849	0.5075	0.0207	2825	25	2735	289	2646	133	6
2147_108	0.64	0.1627	0.0026	10.2854	0.1388	0.4553	0.0179	2480	27	2460	140	2418	115	2

No	Th/II			Изотопные от	ношения					Возраст, мл	ін лет			D, %
JNg	11/0	207Pb/206Pb	1σ	207Pb/235U	1σ	206Pb/238U	1σ	207Pb/206Pb	1σ	207Pb/235U	1σ	206Pb/238U	1σ	-
2147_109	0.33	0.2262	0.0029	17.6755	0.2082	0.5727	0.0218	3020	20	2972	211	2918	140	3
2147_11	0.36	0.1598	0.0029	10.8837	0.202	0.4684	0.0096	2450	30	2513	205	2476	62	-1
2147_110	1.22	0.2106	0.0018	16.4036	0.1066	0.5597	0.0208	2905	13	2900	108	2865	134	1
2147_111	0.50	0.1672	0.0015	10.7575	0.104	0.4663	0.0174	2525	15	2502	105	2467	112	2
2147_112	0.63	0.1582	0.0032	10.2611	0.1219	0.4567	0.0179	2435	33	2458	123	2424	115	0
2147_12	0.60	0.1619	0.0027	10.8194	0.1922	0.4728	0.0093	2470	28	2507	195	2495	59	-1
2147_13	0.90	0.1503	0.0026	10.0113	0.185	0.4616	0.0089	2345	30	2435	187	2446	57	-4
2147_14	0.54	0.1583	0.0028	10.7793	0.2181	0.4737	0.0099	2435	29	2504	221	2499	63	-2
2147_15	0.26	0.1366	0.0024	6.0806	0.1299	0.3186	0.0069	2180	30	1987	131	1782	44	18
2147_16	0.62	0.1516	0.0041	8.4103	0.2269	0.4094	0.014	2360	46	2276	230	2212	90	6
2147_17	0.68	0.2261	0.0038	12.4082	0.2278	0.3836	0.0074	3020	26	2635	231	2093	47	30
2147_18	0.63	0.1785	0.0034	12.8838	0.3198	0.5168	0.0121	2635	31	2671	324	2685	78	-1
2147_2	0.41	0.167	0.0025	12.4521	0.2182	0.5088	0.0094	2525	25	2639	221	2651	60	-5
2147_20	0.80	0.1707	0.0029	11.6482	0.2537	0.4847	0.0181	2560	28	2576	257	2547	116	0
2147_21	0.52	0.1469	0.0013	9.6417	0.1001	0.4595	0.0176	2305	15	2401	101	2437	113	-5
2147_22	0.27	0.1578	0.0018	7.3033	0.1379	0.3224	0.0131	2430	19	2149	140	1801	84	25
2147_23	0.62	0.1544	0.002	10.2913	0.1142	0.4681	0.0179	2390	22	2461	115	2475	115	-3
2147_24	0.38	0.1392	0.0022	6.5094	0.0986	0.3573	0.0144	2215	28	2047	100	1969	92	11
2147_25	6.73	0.1842	0.0016	13.0579	0.0951	0.5113	0.0191	2690	13	2683	96	2662	123	1
2147_26	0.24	0.1575	0.0026	10.6406	0.1253	0.4732	0.0186	2425	27	2492	127	2497	119	-2
2147_27	1.14	0.1708	0.0016	12.3881	0.1143	0.5091	0.0191	2560	16	2634	116	2652	123	-3
2147_28	1.21	0.1814	0.0016	10.4853	0.0726	0.413	0.0154	2660	14	2478	73	2228	98	16
2147_29	0.51	0.1708	0.0024	12.546	0.2273	0.5111	0.0193	2560	24	2646	230	2661	124	-3
2147_3	1.12	0.2202	0.0049	11.9632	0.3584	0.3989	0.0092	2980	35	2601	363	2164	59	27
2147_30	0.12	0.1472	0.0014	9.7038	0.1181	0.4617	0.0179	2310	15	2407	119	2447	115	-5
2147_31	0.47	0.1768	0.0017	12.4123	0.2142	0.4973	0.0197	2620	16	2636	217	2602	127	0
2147_32	0.50	0.2047	0.0015	16.9077	0.1536	0.5737	0.0218	2860	11	2929	155	2922	140	-2
2147_33	0.39	0.1597	0.0017	10.7246	0.1596	0.4748	0.0183	2450	17	2499	162	2504	118	-2

No	Th/II			Изотопные от	ношения					Возраст, мл	ін лет			D, %
JNg	11/0	207Pb/206Pb	1σ	207Pb/235U	1σ	206Pb/238U	1σ	207Pb/206Pb	1σ	207Pb/235U	1σ	206Pb/238U	1σ	
2147_34	0.23	0.1701	0.0022	12.3448	0.1586	0.5115	0.02	2555	21	2630	160	2662	129	-4
2147_35	0.46	0.1508	0.0012	9.1113	0.1022	0.4327	0.0168	2350	13	2349	103	2318	108	1
2147_36	0.41	0.1746	0.0019	12.8662	0.2066	0.5232	0.0213	2600	18	2669	209	2712	137	-4
2147_37	0.63	0.1989	0.0024	15.7223	0.2139	0.5645	0.0222	2815	19	2860	217	2885	143	-2
2147_38	0.40	0.1784	0.0024	13.034	0.1594	0.5235	0.0204	2635	22	2682	161	2713	131	-2
2147_39	0.23	0.1475	0.002	5.1272	0.1062	0.2571	0.0108	2315	22	1840	107	1474	69	36
2147_4	0.11	0.149	0.0025	10.0615	0.1789	0.4631	0.0087	2330	28	2440	181	2453	56	-5
2147_40	0.69	0.1655	0.0013	11.1865	0.1379	0.4851	0.0188	2510	13	2538	139	2549	121	-1
2147_41	0.61	0.1547	0.0022	9.8904	0.1371	0.4632	0.0184	2395	24	2424	139	2453	118	-2
2147_42	0.49	0.1585	0.0015	9.8153	0.1431	0.4478	0.0178	2435	15	2417	145	2385	114	2
2147_43	1.00	0.126	0.0019	6.7715	0.1165	0.3857	0.0153	2040	27	2081	118	2102	98	-3
2147_44	0.54	0.1572	0.0013	9.5947	0.1092	0.4411	0.0169	2420	14	2396	110	2355	108	2
2147_45	0.78	0.1669	0.0027	12.033	0.1969	0.5088	0.0204	2525	27	2606	199	2651	131	-5
2147_46	0.54	0.1611	0.0013	10.3227	0.1046	0.4592	0.0174	2465	13	2464	106	2436	112	1
2147_47	1.06	0.1657	0.0019	7.8024	0.1424	0.3362	0.0135	2510	19	2208	144	1868	86	25
2147_48	0.81	0.152	0.0026	8.1677	0.2668	0.3841	0.0165	2365	29	2249	270	2095	106	11
2147_49	0.38	0.1749	0.0023	12.9683	0.1929	0.5255	0.0204	2600	22	2677	195	2722	131	-4
2147_5	0.59	0.1736	0.0032	10.2365	0.2825	0.4014	0.0087	2590	31	2456	286	2175	56	16
2147_50	0.63	0.158	0.0013	9.9798	0.1123	0.4543	0.0173	2430	13	2432	113	2414	111	0
2147_51	0.39	0.159	0.0015	10.7221	0.1244	0.4794	0.0185	2440	15	2499	126	2524	119	-3
2147_52	0.48	0.1538	0.0015	10.4306	0.1504	0.4777	0.0193	2385	16	2473	152	2517	124	-5
2147_53	1.27	0.1536	0.0017	9.7688	0.0934	0.4526	0.0174	2385	18	2413	94	2406	111	0
2147_54	0.42	0.1521	0.0012	9.4492	0.0874	0.4465	0.017	2365	13	2382	88	2379	109	0
2147_55	0.44	0.1586	0.0014	10.6334	0.1041	0.4759	0.0181	2435	15	2491	105	2509	116	-3
2147_56	0.62	0.1706	0.0024	11.1283	0.1662	0.4796	0.0193	2560	23	2533	168	2525	124	1
2147_57	0.47	0.2113	0.0013	17.1531	0.1559	0.5813	0.0221	2910	10	2943	158	2954	142	-1
2147_58	0.66	0.1608	0.0023	10.4147	0.1304	0.4708	0.0185	2460	24	2472	132	2487	119	-1
2147_59	1.00	0.3222	0.0035	33.0711	0.4677	0.737	0.0287	3575	16	3582	474	3559	185	0

No	Th/II			Изотопные от	ношения			Возраст, млн лет						
JIE	11/0	207Pb/206Pb	1σ	207Pb/235U	1σ	206Pb/238U	1σ	207Pb/206Pb	1σ	207Pb/235U	1σ	206Pb/238U	1σ	
2147_6	0.43	0.2014	0.0046	8.5712	0.2084	0.3122	0.0075	2835	37	2293	211	1751	48	38
2147_60	0.79	0.2101	0.0024	15.2741	0.1939	0.5441	0.0214	2905	18	2832	196	2800	138	3
2147_61	2.08	0.2098	0.0022	15.8977	0.3416	0.5536	0.0225	2900	16	2870	346	2840	144	2
2147_62	0.44	0.166	0.0015	11.3416	0.1156	0.4793	0.0182	2515	15	2551	117	2524	117	0
2147_63	0.42	0.1609	0.0015	10.6944	0.107	0.4764	0.0182	2460	15	2496	108	2511	117	-2
2147_64	0.49	0.163	0.0019	10.367	0.1117	0.4605	0.0175	2485	19	2468	113	2441	112	1
2147_65	0.50	0.1628	0.0018	11.005	0.1176	0.4805	0.0182	2480	18	2523	119	2529	117	-1
2147_66	0.37	0.1902	0.0017	14.3542	0.1527	0.5376	0.0204	2740	14	2773	155	2773	131	-1
2147_67	0.49	0.1729	0.0015	12.1968	0.0947	0.5016	0.0187	2585	14	2619	96	2620	120	-1
2147_68	0.53	0.1619	0.0014	10.8046	0.0988	0.4776	0.018	2475	14	2506	100	2516	116	-1
2147_69	0.54	0.2411	0.0022	21.5554	0.2141	0.639	0.0241	3125	14	3163	217	3185	155	-1
2147_7	0.46	0.1692	0.0029	12.5546	0.2236	0.5103	0.0099	2545	29	2646	227	2657	64	-4
2147_70	0.73	0.1756	0.002	12.3934	0.1229	0.508	0.0193	2610	19	2634	124	2648	124	-1
2147_71	0.61	0.1624	0.0015	10.3277	0.1093	0.4603	0.0175	2480	15	2464	111	2440	112	1
2147_72	0.55	0.1624	0.0033	10.303	0.2089	0.4469	0.0197	2480	34	2462	212	2381	126	3
2147_73	0.23	0.1618	0.0014	10.6387	0.1013	0.4693	0.0177	2470	15	2492	102	2480	114	0
2147_74	0.86	0.1583	0.0013	10.0335	0.0922	0.4564	0.0173	2435	13	2437	93	2423	111	0
2147_75	0.64	0.1607	0.0019	10.4471	0.1245	0.467	0.0178	2460	20	2475	126	2470	115	0
2147_76	0.61	0.1652	0.0018	5.0939	0.0799	0.22	0.0083	2505	18	1835	81	1281	53	48
2147_77	0.08	0.205	0.0015	11.9965	0.2326	0.4132	0.017	2865	11	2604	236	2229	109	22
2147_78	0.23	0.1544	0.0027	10.0344	0.5102	0.4241	0.0176	2390	30	2437	518	2279	113	4
2147_79	0.35	0.1613	0.0012	10.6028	0.0844	0.47	0.0177	2465	12	2488	85	2483	113	0
2147_8	0.66	0.1666	0.0032	12.0419	0.2442	0.4921	0.0098	2520	32	2607	247	2579	63	-2
2147_80	0.23	0.1635	0.0011	10.3897	0.0791	0.4566	0.017	2490	11	2470	80	2424	109	2
2147_81	0.52	0.1599	0.0009	8.7178	0.0921	0.3882	0.0146	2450	9	2308	93	2114	94	13
2147_82	0.79	0.1669	0.0046	10.477	0.212	0.4499	0.0199	2525	46	2477	215	2394	128	5
2147_83	0.58	0.1545	0.0021	9.6818	0.1375	0.4558	0.0177	2395	22	2404	139	2421	114	-1
2147_84	2.00	0.2325	0.0035	14.6809	0.5641	0.4315	0.0191	3065	24	2794	572	2312	122	24

N-	Th /I I		Возраст, млн лет											
JNG	1 1/U	207Pb/206Pb	1σ	207Pb/235U	1σ	206Pb/238U	1σ	207Pb/206Pb	1σ	207Pb/235U	1σ	206Pb/238U	1σ	
2147_85	0.37	0.1338	0.0013	4.8349	0.0579	0.262	0.0099	2145	17	1790	58	1500	63	30
2147_86	0.17	0.1613	0.0016	10.4745	0.0905	0.4672	0.0177	2465	16	2477	91	2471	114	0
2147_87	1.05	0.1573	0.0018	9.8533	0.1214	0.4471	0.0169	2425	19	2421	123	2382	109	1
2147_88	0.85	0.2289	0.0018	18.6709	0.1449	0.5881	0.0221	3040	12	3024	147	2981	142	1
2147_89	0.65	0.1577	0.0016	10.2564	0.092	0.4642	0.0175	2430	17	2458	93	2458	112	-1
2147_9	0.65	0.1585	0.0027	10.9089	0.2029	0.4794	0.0097	2435	28	2515	206	2524	62	-3
2147_90	0.30	0.1595	0.0015	10.4173	0.1038	0.4653	0.0177	2445	16	2472	105	2463	114	0
2147_91	0.53	0.2687	0.0064	11.894	0.5247	0.311	0.013	3295	37	2596	532	1745	84	47
2147_92	0.43	0.1601	0.0015	10.5355	0.1012	0.4699	0.0178	2455	16	2483	102	2482	114	-1
2147_93	0.51	0.16	0.0018	10.1626	0.128	0.4573	0.018	2455	18	2449	129	2427	115	1
2147_94	0.60	0.1828	0.0032	10.1605	0.1628	0.3901	0.0153	2675	28	2449	165	2123	<u>98</u>	20
2147_95	0.70	0.3167	0.0051	21.8835	0.2842	0.5024	0.0197	3550	25	3178	288	2624	127	26
2147_96	1.01	0.3254	0.0044	31.1275	0.465	0.7093	0.0279	3590	20	3523	472	3455	179	3
2147_97	0.39	0.1627	0.0026	10.6892	0.1665	0.4618	0.018	2480	27	2496	169	2447	116	1
2147_98	0.70	0.1641	0.0016	10.5004	0.113	0.4658	0.0178	2495	16	2479	114	2465	114	1
2147_99	0.57	0.1678	0.0017	10.7285	0.1149	0.4664	0.0177	2530	17	2499	116	2467	114	2
	T	1		1	2155 (xap	огитуйская св	ита, Ш г	руппа)			I	Í		I
2155_1	0.43	0.1216	0.0011	6.3259	0.0674	0.371	0.0046	1975	15	2022	68	2033	29	-2
2155_10	0.63	0.0969	0.0008	1.6081	0.0288	0.1177	0.0022	1560	16	973	29	717	13	54
2155_100	1.41	0.0851	0.0015	0.7883	0.0234	0.0664	0.0021	1315	33	590	23	414	13	68
2155_101	0.99	0.1539	0.0023	1.9575	0.0755	0.0893	0.0031	2385	25	1101	76	551	20	76
2155_102	1.08	0.1028	0.0031	2.1597	0.0836	0.1493	0.0057	1670	56	1168	84	897	36	46
2155_103	0.51	0.0847	0.0016	0.9116	0.0313	0.076	0.0024	1305	36	657	31	472	15	63
2155_104	2.34	0.1034	0.0038	3.9844	0.1607	0.2785	0.0131	1685	67	1631	163	1583	84	6
2155_105	0.74	0.1112	0.0021	5.4034	0.194	0.3441	0.0128	1815	35	1885	196	1906	82	-5
2155_106	0.60	0.1043	0.0024	3.98	0.1307	0.2722	0.011	1700	41	1630	132	1552	71	8
2155_107	0.73	0.0953	0.0017	1.1078	0.0333	0.082	0.0024	1530	33	757	33	507	15	66
2155_108	0.67	0.1132	0.0019	1.3405	0.0375	0.0856	0.0025	1845	30	863	38	529	16	71

Na	ть/П			Изотопные от	ношения					Возраст, мл	ін лет			D, %
JNg	11/0	207Pb/206Pb	1σ	207Pb/235U	1σ	206Pb/238U	1σ	207Pb/206Pb	1σ	207Pb/235U	1σ	206Pb/238U	1σ	
2155_109	1.18	0.114	0.004	5.7313	0.239	0.3534	0.0161	1860	62	1936	242	1950	104	-4
2155_11	1.54	0.116	0.0011	2.4499	0.0786	0.1496	0.0047	1890	16	1257	79	898	30	52
2155_110	0.55	0.1077	0.0026	4.8625	0.2352	0.3195	0.0144	1760	44	1795	238	1787	92	-1
2155_111	0.57	0.1119	0.002	1.5601	0.0529	0.1	0.0032	1825	32	954	53	614	20	66
2155_112	0.48	0.0925	0.0015	1.0491	0.0329	0.0807	0.0023	1475	30	728	33	500	14	66
2155_113	1.11	0.0986	0.0017	0.9442	0.0383	0.0696	0.0024	1595	31	675	38	433	15	72
2155_114	0.84	0.1168	0.0053	4.9965	0.2414	0.323	0.0149	1905	81	1818	245	1804	96	5
2155_115	0.39	0.1386	0.0021	1.7455	0.0426	0.0924	0.0023	2205	25	1025	43	569	15	74
2155_116	0.95	0.1382	0.0021	1.5837	0.0412	0.0825	0.0022	2200	26	963	41	511	14	76
2155_117	0.22	0.1679	0.0026	2.5407	0.0911	0.1104	0.004	2535	25	1283	92	674	25	73
2155_118	0.63	0.127	0.002	2.477	0.0737	0.1441	0.0046	2055	27	1265	74	867	29	57
2155_119	0.28	0.1401	0.0022	7.335	0.2203	0.3764	0.0108	2225	27	2153	223	2059	69	7
2155_12	0.28	0.0856	0.0008	1.1857	0.0134	0.0994	0.0014	1325	19	793	13	610	8	53
2155_120	0.14	0.1226	0.003	6.0534	0.3077	0.3583	0.0187	1990	43	1983	312	1974	120	0
2155_121	0.59	0.1193	0.0017	1.3654	0.0406	0.0815	0.0021	1945	26	874	41	505	13	74
2155_122	0.98	0.1096	0.0019	1.4248	0.0694	0.0922	0.0032	1790	32	899	70	568	20	68
2155_123	0.47	0.1268	0.0029	4.5819	0.2198	0.2603	0.0125	2050	40	1745	223	1491	80	27
2155_124	0.64	0.1139	0.0028	4.8498	0.1706	0.3079	0.0109	1860	43	1793	173	1730	70	6
2155_125	0.66	0.0817	0.0013	0.7083	0.0221	0.0625	0.0019	1235	32	543	22	390	12	68
2155_126	0.53	0.1221	0.0027	6.1935	0.2533	0.3661	0.0147	1985	39	2003	257	2010	94	-1
2155_127	0.51	0.1226	0.0018	1.2768	0.0288	0.0762	0.0019	1990	25	835	29	473	12	76
2155_128	0.55	0.1314	0.0027	3.6386	0.171	0.1961	0.0084	2115	36	1558	173	1154	54	45
2155_129	0.63	0.1295	0.0029	6.6486	0.2081	0.3691	0.0112	2090	39	2065	211	2025	71	3
2155_13	0.72	0.1279	0.0014	2.9798	0.0556	0.1674	0.0034	2065	19	1402	56	997	21	51
2155_130	0.28	0.1122	0.0016	5.2089	0.2615	0.3297	0.0166	1830	26	1854	265	1836	106	0
2155_131	0.42	0.1293	0.0025	6.4368	0.1462	0.3592	0.0113	2085	34	2037	148	1978	72	5
2155_132	0.24	0.1143	0.0029	5.2469	0.1524	0.334	0.0115	1865	45	1860	154	1857	73	0
2155_133	0.07	0.0724	0.0011	0.6846	0.022	0.0671	0.0019	995	31	529	22	418	12	57

Na	Th/II		Изотопные от			Возраст, млн лет								
JAG	11/0	207Pb/206Pb	1σ	207Pb/235U	1σ	206Pb/238U	1σ	207Pb/206Pb	1σ	207Pb/235U	1σ	206Pb/238U	1σ	
2155_134	1.15	0.0853	0.0012	1.003	0.0297	0.0847	0.0024	1320	27	705	30	523	15	60
2155_135	0.36	0.1198	0.0027	5.3856	0.1568	0.3254	0.0115	1950	40	1882	159	1816	74	6
2155_136	0.45	0.1037	0.0017	1.0445	0.038	0.0739	0.0025	1690	29	726	38	459	16	72
2155_137	0.09	0.0825	0.0014	0.8127	0.0268	0.0747	0.0027	1255	32	603	27	464	17	62
2155_138	0.38	0.1116	0.0032	4.7873	0.2545	0.3145	0.0173	1820	51	1782	258	1762	111	3
2155_139	0.66	0.1119	0.0024	5.05	0.2518	0.3239	0.0158	1830	39	1827	255	1808	101	1
2155_14	0.47	0.1169	0.0024	5.5246	0.0865	0.3391	0.0059	1905	36	1904	87	1882	37	1
2155_140	0.81	0.0887	0.0013	0.7876	0.0264	0.0641	0.0021	1395	27	589	26	400	13	71
2155_141	0.19	0.089	0.0013	0.7953	0.0296	0.0639	0.0021	1400	27	594	30	399	13	71
2155_142	0.74	0.1045	0.0019	1.1546	0.0399	0.0823	0.0029	1700	33	779	40	509	18	70
2155_143	0.19	0.0672	0.001	0.545	0.0176	0.0582	0.0017	840	30	441	17	364	11	56
2155_144	1.15	0.1056	0.0015	0.8577	0.0272	0.0585	0.0019	1720	26	628	27	366	12	78
2155_145	0.35	0.1128	0.0034	5.1323	0.2591	0.3349	0.0182	1840	54	1841	263	1862	117	-1
2155_146	0.25	0.1472	0.0018	1.4684	0.0471	0.0714	0.0023	2310	21	917	47	444	14	80
2155_147	0.55	0.0907	0.0014	0.943	0.0311	0.0764	0.0025	1435	29	674	31	474	16	66
2155_148	0.75	0.1034	0.0016	2.4043	0.0788	0.168	0.0051	1685	29	1243	80	1001	33	40
2155_149	0.80	0.1114	0.0022	3.3141	0.1278	0.2142	0.0061	1820	35	1484	129	1250	39	31
2155_15	0.71	0.1121	0.0018	5.0983	0.0714	0.3241	0.0057	1830	29	1835	72	1809	36	1
2155_150	0.52	0.093	0.0015	0.9618	0.0273	0.0759	0.0021	1485	30	684	27	471	13	68
2155_151	0.42	0.1143	0.0026	5.1028	0.22	0.3275	0.0155	1865	41	1836	223	1826	99	2
2155_152	0.59	0.1069	0.0014	1.0718	0.0352	0.0728	0.0023	1745	24	739	35	452	15	74
2155_153	1.29	0.0764	0.0011	0.5904	0.0167	0.056	0.0016	1105	29	471	16	350	10	68
2155_154	0.64	0.1243	0.004	6.1484	0.2798	0.3632	0.0192	2015	57	1997	284	1997	123	0
2155_155	0.37	0.0837	0.0016	0.9385	0.032	0.0793	0.0025	1285	37	672	32	492	16	61
2155_156	0.72	0.1258	0.0019	1.2289	0.0437	0.0714	0.0024	2035	27	813	44	444	15	78
2155_157	0.91	0.1219	0.0038	5.5362	0.1402	0.3287	0.0089	1980	55	1906	142	1832	57	7
2155_158	0.45	0.0889	0.0015	0.8582	0.0332	0.0701	0.0022	1400	31	629	33	436	14	68
2155_159	2.41	0.1351	0.0021	2.2221	0.0574	0.1216	0.0034	2165	27	1188	58	739	21	65

Na	Th/II			Изотопные от	ношения					Возраст, мл	н лет			D, %
JNg	1 1/U	207Pb/206Pb	1σ	207Pb/235U	1σ	206Pb/238U	1σ	207Pb/206Pb	1σ	207Pb/235U	1σ	206Pb/238U	1σ	-
2155_16	0.39	0.0916	0.0012	1.0664	0.0109	0.0826	0.001	1455	25	736	11	511	6	64
2155_160	0.40	0.1293	0.002	2.1711	0.0604	0.1227	0.0035	2085	27	1171	61	746	22	64
2155_161	0.43	0.1487	0.0023	3.5362	0.1197	0.1668	0.0049	2325	26	1535	121	994	31	57
2155_162	0.48	0.0821	0.0012	0.8887	0.0294	0.0775	0.0024	1245	29	645	29	481	15	61
2155_163	0.52	0.1125	0.0019	1.584	0.0461	0.1011	0.0028	1835	30	963	46	621	18	66
2155_164	0.80	0.1144	0.0028	5.3397	0.1771	0.3359	0.0103	1870	44	1875	179	1866	66	0
2155_165	0.40	0.0904	0.0014	0.9974	0.0349	0.0787	0.0026	1430	30	702	35	488	16	65
2155_166	0.60	0.125	0.0028	6.3753	0.2036	0.3677	0.0116	2025	39	2028	206	2018	74	0
2155_167	0.29	0.122	0.0023	6.1624	0.3401	0.3634	0.0201	1980	33	1999	345	1998	129	0
2155_168	0.43	0.1151	0.0044	5.2691	0.2849	0.3354	0.0157	1880	69	1863	289	1864	101	0
2155_169	0.37	0.1555	0.0024	3.889	0.0968	0.1874	0.0054	2405	26	1611	98	1107	35	53
2155_17	0.76	0.1124	0.0014	5.5009	0.067	0.3472	0.0055	1835	22	1900	68	1921	35	-4
2155_170	0.43	0.1216	0.0052	5.5138	0.2885	0.3424	0.0202	1975	76	1902	292	1898	130	3
2155_171	0.32	0.133	0.0025	2.4343	0.0895	0.1391	0.0058	2135	33	1252	90	839	37	60
2155_172	0.46	0.1117	0.0035	4.9191	0.2854	0.3211	0.0173	1825	57	1805	289	1795	111	1
2155_173	1.82	0.0675	0.0013	0.6528	0.0283	0.0688	0.0025	850	38	510	28	428	15	49
2155_174	0.71	0.1193	0.0018	2.4319	0.0548	0.1491	0.0037	1940	26	1252	55	895	23	53
2155_175	0.66	0.1098	0.0019	1.3983	0.043	0.093	0.0029	1795	32	888	43	573	18	68
2155_176	0.49	0.1296	0.0068	5.643	0.3232	0.3332	0.0193	2090	92	1922	328	1854	124	11
2155_177	0.18	0.1028	0.0015	4.2665	0.1545	0.2941	0.0099	1675	27	1686	156	1661	63	0
2155_178	0.78	0.111	0.0036	4.8918	0.2367	0.3194	0.016	1815	59	1800	240	1787	103	1
2155_179	0.41	0.1148	0.003	5.3514	0.2543	0.3405	0.0194	1875	47	1877	258	1889	125	0
2155_18	0.58	0.111	0.0017	5.0972	0.1023	0.3268	0.0066	1810	27	1835	103	1822	42	0
2155_180	0.19	0.069	0.0011	0.6181	0.0198	0.0637	0.0018	895	31	488	20	398	11	55
2155_181	0.25	0.1104	0.0016	1.5002	0.0461	0.0961	0.0025	1805	26	930	46	591	15	67
2155_182	1.68	0.1185	0.0018	1.1776	0.0493	0.0713	0.0024	1930	26	790	50	444	15	76
2155_183	0.55	0.1116	0.0016	1.1691	0.0378	0.0748	0.0021	1820	25	786	38	464	13	74
2155_184	0.62	0.0766	0.0014	0.7961	0.0276	0.075	0.0026	1105	36	594	27	466	17	57

No	Th/II			Изотопные от	ношения					Возраст, мл	н лет			D, %
JNg	11/0	207Pb/206Pb	1σ	207Pb/235U	1σ	206Pb/238U	1σ	207Pb/206Pb	1σ	207Pb/235U	1σ	206Pb/238U	1σ	-
2155_185	0.35	0.1218	0.0032	6.304	0.2063	0.3687	0.0127	1980	46	2019	209	2023	81	-2
2155_19	0.50	0.1134	0.0016	5.1959	0.0658	0.3248	0.0065	1850	25	1851	66	1812	41	2
2155_2	0.59	0.1368	0.0012	2.5453	0.0475	0.1321	0.0025	2185	15	1285	48	799	15	63
2155_20	1.70	0.1143	0.0008	1.526	0.0164	0.0948	0.0012	1865	11	940	16	583	7	68
2155_21	0.73	0.2398	0.0022	5.9502	0.0816	0.1756	0.002	3115	14	1968	82	1042	12	66
2155_22	0.80	0.1116	0.0008	5.4621	0.0448	0.3466	0.0041	1820	13	1894	45	1918	26	-5
2155_23	0.67	0.1363	0.0012	1.9052	0.0198	0.0987	0.001	2175	15	1082	20	606	6	72
2155_24	0.85	0.1167	0.001	3.7238	0.0746	0.2267	0.0049	1905	15	1576	75	1317	31	30
2155_25	0.59	0.1234	0.0012	4.8237	0.0621	0.2763	0.0033	2005	16	1789	63	1572	21	21
2155_26	0.58	0.1194	0.001	6.2488	0.0538	0.3718	0.004	1945	15	2011	54	2037	25	-4
2155_27	0.93	0.1207	0.001	3.3459	0.0296	0.1965	0.002	1965	15	1491	30	1156	13	41
2155_28	0.67	0.1122	0.0008	5.4099	0.0369	0.3425	0.0031	1830	13	1886	37	1898	20	-3
2155_29	0.98	0.1107	0.0016	4.9946	0.0692	0.3202	0.0058	1810	25	1818	70	1790	37	1
2155_3	0.57	0.1245	0.0012	3.5186	0.0483	0.2004	0.0025	2020	17	1531	49	1177	16	41
2155_30	0.92	0.1384	0.001	2.5487	0.022	0.1309	0.0015	2205	12	1286	22	793	9	64
2155_31	1.53	0.1154	0.002	2.4956	0.0906	0.1496	0.0032	1885	30	1270	91	898	20	52
2155_32	0.89	0.1113	0.0017	5.0012	0.0656	0.3191	0.0056	1815	28	1819	66	1785	36	1
2155_33	0.98	0.1273	0.0025	5.2121	0.0839	0.2919	0.0065	2060	34	1854	85	1650	42	19
2155_34	0.93	0.1125	0.0011	5.4164	0.0493	0.343	0.0038	1835	17	1887	50	1900	24	-3
2155_35	0.45	0.1207	0.0016	5.9083	0.0856	0.3469	0.0064	1965	23	1962	86	1919	40	2
2155_36	1.89	0.0741	0.0007	0.8033	0.0113	0.0765	0.0009	1040	17	598	11	475	6	54
2155_37	0.65	0.1141	0.0017	5.5308	0.0859	0.3439	0.0054	1860	27	1905	87	1905	34	-2
2155_38	0.38	0.1651	0.0015	3.7328	0.0453	0.1601	0.0024	2505	15	1578	46	957	15	61
2155_39	0.37	0.1173	0.0012	1.6283	0.0195	0.098	0.0013	1915	18	981	19	602	8	68
2155_4	1.06	0.1122	0.0014	5.3046	0.0598	0.3387	0.0046	1830	22	1869	60	1880	29	-2
2155_40	1.20	0.1176	0.0013	3.3167	0.128	0.1948	0.0066	1915	20	1484	129	1147	42	40
2155_41	0.70	0.1125	0.0015	1.6896	0.0275	0.1066	0.0021	1840	24	1004	27	652	13	64
2155_42	0.67	0.1195	0.0013	6.0826	0.0575	0.3613	0.0045	1945	20	1987	58	1988	28	-2

No	Th/II			Изотопные от	ношения					Возраст, мл	ін лет			D, %
JNg	11/0	207Pb/206Pb	1σ	207Pb/235U	1σ	206Pb/238U	1σ	207Pb/206Pb	1σ	207Pb/235U	1σ	206Pb/238U	1σ	
2155_43	1.65	0.1309	0.0033	4.358	0.0964	0.2393	0.0072	2105	44	1704	97	1382	46	34
2155_44	0.62	0.1159	0.0015	4.951	0.0599	0.3015	0.0047	1890	23	1811	60	1698	30	10
2155_45	0.30	0.1217	0.0009	6.3391	0.0489	0.3685	0.0035	1980	13	2023	49	2022	22	-2
2155_46	0.41	0.1195	0.0015	3.0036	0.0752	0.1771	0.0037	1945	22	1408	76	1050	23	45
2155_47	0.49	0.1186	0.0016	3.091	0.0367	0.1862	0.0034	1930	23	1430	37	1100	22	42
2155_48	1.47	0.1118	0.0007	5.3662	0.0395	0.3389	0.0028	1825	12	1879	40	1881	18	-3
2155_49	0.61	0.1124	0.0008	5.0343	0.0345	0.3174	0.002	1835	13	1825	35	1777	13	3
2155_5	0.54	0.106	0.0013	1.1149	0.0205	0.0751	0.0012	1730	23	760	20	466	7	73
2155_50	0.69	0.1051	0.0015	1.3126	0.0163	0.0892	0.0015	1715	25	851	16	550	9	67
2155_51	0.43	0.1114	0.0011	4.8497	0.0613	0.3061	0.004	1820	17	1793	62	1721	25	5
2155_52	0.27	0.1382	0.0017	3.0335	0.0656	0.1541	0.0029	2200	20	1416	66	923	18	58
2155_53	2.05	0.1114	0.0012	5.0628	0.0587	0.3211	0.0049	1820	20	1829	59	1795	31	1
2155_54	1.56	0.1081	0.0017	4.1657	0.0794	0.2715	0.0053	1765	29	1667	80	1548	34	12
2155_55	0.26	0.0857	0.0012	0.8548	0.012	0.0711	0.0013	1330	26	627	12	442	8	66
2155_56	0.93	0.1356	0.0019	2.473	0.0438	0.1297	0.0021	2170	24	1264	44	786	13	63
2155_57	0.81	0.1136	0.0009	5.5407	0.0417	0.3433	0.0032	1855	13	1906	42	1902	20	-2
2155_58	0.89	0.1256	0.0012	4.6625	0.1219	0.2586	0.0057	2035	17	1760	123	1482	36	27
2155_59	0.31	0.1411	0.0026	2.2739	0.0391	0.1143	0.0019	2240	31	1204	39	697	12	68
2155_6	1.12	0.1128	0.0011	5.4465	0.054	0.3445	0.0045	1840	18	1892	54	1908	28	-3
2155_60	0.65	0.0777	0.001	0.8703	0.0104	0.0802	0.0013	1135	25	635	10	497	8	56
2155_61	1.82	0.1551	0.002	2.6474	0.0307	0.122	0.0021	2400	21	1313	31	741	13	69
2155_62	1.17	0.1485	0.0035	3.7364	0.0893	0.1781	0.0031	2325	40	1579	90	1056	20	54
2155_63	0.84	0.0744	0.0011	0.9214	0.0118	0.0877	0.0014	1050	28	663	12	541	9	48
2155_64	0.46	0.1127	0.0025	5.0296	0.084	0.3127	0.0081	1840	39	1824	85	1754	52	4
2155_65	0.67	0.1095	0.0021	1.9595	0.0677	0.1357	0.0048	1790	35	1101	68	820	31	54
2155_66	0.39	0.1523	0.0031	2.0265	0.0829	0.1026	0.0046	2370	34	1124	84	629	29	73
2155_67	0.70	0.0853	0.0016	0.8168	0.0274	0.0714	0.0024	1320	35	606	27	444	15	66
2155_68	0.74	0.1108	0.0039	4.6091	0.2749	0.3084	0.018	1810	63	1750	279	1732	115	4

Na	ть/П			Возраст, млн лет										
JAG	11/0	207Pb/206Pb	1σ	207Pb/235U	1σ	206Pb/238U	1σ	207Pb/206Pb	1σ	207Pb/235U	1σ	206Pb/238U	1σ	
2155_69	0.50	0.1107	0.003	4.6987	0.2091	0.3207	0.015	1810	48	1767	212	1793	96	0
2155_7	0.62	0.1202	0.0017	6.0955	0.0777	0.3655	0.0063	1955	25	1989	78	2008	40	-2
2155_70	0.45	0.1909	0.0034	4.5097	0.1124	0.1799	0.0052	2745	29	1732	114	1066	33	61
2155_71	0.80	0.1022	0.0066	4.0242	0.2618	0.3009	0.017	1660	120	1639	265	1695	109	-2
2155_72	0.72	0.0895	0.0018	0.9578	0.0347	0.0776	0.0026	1410	37	682	35	481	16	65
2155_73	0.19	0.1042	0.0017	1.323	0.0434	0.0912	0.0029	1695	29	855	44	562	18	66
2155_74	0.56	0.1113	0.0052	4.2685	0.2176	0.296	0.014	1820	84	1687	220	1671	90	8
2155_75	0.46	0.1101	0.0051	4.9562	0.3076	0.3222	0.0182	1795	84	1811	312	1800	117	0
2155_76	0.92	0.0962	0.0018	0.9786	0.0376	0.0729	0.0028	1550	34	692	38	453	18	70
2155_77	0.16	0.0808	0.0013	0.7604	0.0241	0.0666	0.0021	1215	31	574	24	415	13	65
2155_78	0.49	0.0754	0.0016	0.7944	0.0313	0.0752	0.0029	1075	43	593	31	467	18	56
2155_79	0.33	0.1281	0.0022	2.1782	0.0702	0.118	0.0035	2070	30	1174	71	719	22	65
2155_8	1.05	0.1429	0.0017	2.5789	0.035	0.1289	0.0018	2260	20	1294	35	781	11	65
2155_80	0.49	0.074	0.0015	0.7214	0.0276	0.069	0.0023	1035	40	551	28	429	14	58
2155_81	0.34	0.1137	0.0041	5.1793	0.2609	0.3261	0.0166	1855	65	1849	264	1819	106	1
2155_82	2.06	0.1152	0.0018	2.6843	0.0801	0.1605	0.004	1880	28	1324	81	959	25	48
2155_83	1.27	0.1362	0.0022	2.9054	0.0994	0.149	0.0049	2175	27	1383	100	895	31	58
2155_84	0.68	0.2211	0.0028	6.5617	0.2012	0.212	0.0063	2985	20	2054	204	1239	40	58
2155_85	0.46	0.1497	0.0036	1.7083	0.0796	0.0787	0.0025	2340	41	1011	80	488	16	79
2155_86	1.21	0.1173	0.0021	2.2008	0.0794	0.1411	0.0055	1910	32	1181	80	851	35	55
2155_87	0.55	0.1232	0.0047	5.8676	0.2818	0.3492	0.0142	2000	68	1956	286	1930	91	3
2155_88	0.73	0.0747	0.0015	0.6817	0.0239	0.0677	0.0025	1055	39	527	24	422	15	59
2155_89	0.83	0.078	0.0013	0.7091	0.0266	0.0665	0.0021	1145	33	544	26	415	13	63
2155_9	1.16	0.1107	0.0009	4.2216	0.0389	0.2721	0.0029	1810	14	1678	39	1551	18	14
2155_90	3.54	0.1242	0.0025	2.8173	0.0874	0.1658	0.0053	2015	36	1360	88	988	33	50
2155_91	0.41	0.1035	0.0023	4.3195	0.1182	0.2997	0.0055	1685	40	1697	119	1689	35	0
2155_92	0.29	0.0681	0.001	0.5872	0.0197	0.0628	0.0021	870	29	469	20	392	13	54
2155_93	0.45	0.1182	0.0018	1.8577	0.0636	0.1121	0.0038	1925	27	1066	64	684	24	64

Na	Th/II	Изотопные отношения Возраст 207Db/206Db 1- 207Db/235U 1c 206Db/238U 1c 207Db/206Db 1c 207Db/235							Возраст, мл	н лет			D, %	
712	11/0	207Pb/206Pb	1σ	207Pb/235U	1σ	206Pb/238U	1σ	207Pb/206Pb	1σ	207Pb/235U	1σ	206Pb/238U	1σ	-
2155_94	0.50	0.0749	0.0012	0.7027	0.0257	0.0689	0.0024	1060	31	540	26	429	15	59
2155_95	0.37	0.0828	0.0015	0.847	0.0315	0.0738	0.0027	1260	34	622	31	458	17	63
2155_96	0.49	0.1094	0.0028	4.8973	0.2264	0.3234	0.0153	1785	46	1801	229	1806	98	-1
2155_97	1.19	0.0731	0.0012	0.6261	0.0188	0.0634	0.0022	1015	33	493	19	396	13	60
2155_98	0.39	0.1046	0.0025	4.81	0.2244	0.3217	0.0146	1705	44	1786	227	1798	93	-5
2155_99	0.89	0.1025	0.0018	1.3804	0.0524	0.0927	0.0031	1665	32	880	53	571	19	65
					21108 (xaj	эгитуйская с	вита, III	группа)				1		1
21108-40	0.53	0,1095	0,0027	5,1544	0,1255	0,3239	0,01	1785	45	1845	127	1808	64	-1
21108-50	0.56	0,1138	0,0017	5,22	0,098	0,3259	0,0067	1860	27	1855	99	1818	43	2
21108-60	0.52	0,1127	0,0019	4,8521	0,0788	0,3072	0,006	1840	29	1793	80	1726	38	6
21108-70	0.40	0,1459	0,0022	7,6967	0,1135	0,381	0,0079	2295	25	2196	115	2081	51	9
21108-80	0.52	0,1118	0,0014	5,1224	0,0577	0,3272	0,0055	1825	22	1839	58	1824	35	0
21108_1	0.76	0,1081	0,0015	5,2186	0,063	0,3444	0,0054	1765	25	1855	63	1908	35	-8
21108_10	0.53	0,1269	0,0016	6,0289	0,1367	0,3388	0,0086	2055	22	1980	138	1880	55	8
21108_100	0.43	0,1001	0,0081	3,5391	0,3128	0,2477	0,0046	1625	150	1536	317	1426	29	12
21108_101	0.59	0,1073	0,0085	5,1044	0,4439	0,3253	0,005	1750	145	1836	450	1815	32	-3
21108_102	0.24	0,1034	0,0082	1,9572	0,1727	0,1295	0,0025	1685	147	1100	175	784	16	53
21108_103	0.78	0,1141	0,0096	4,3116	0,4034	0,2842	0,0119	1860	152	1695	409	1612	76	13
21108_104	0.70	0,1174	0,0094	5,7681	0,5067	0,3434	0,0063	1915	143	1941	514	1902	40	0
21108_105	0.48	0,1079	0,0087	4,3757	0,388	0,2999	0,0067	1760	147	1707	393	1691	43	3
21108_11	0.88	0,1106	0,0011	5,1269	0,0566	0,3296	0,0057	1805	17	1840	57	1836	36	-1
21108_12	0.47	0,1111	0,0016	5,1822	0,0721	0,3331	0,0059	1815	25	1849	73	1853	38	-2
21108_13	0.56	0,1081	0,0022	4,1921	0,061	0,2813	0,0054	1765	36	1672	61	1597	35	9
21108_14	0.80	0,1187	0,0034	4,8867	0,1185	0,3034	0,0104	1935	51	1799	120	1707	67	11
21108_15	1.38	0,2051	0,0024	16,8958	0,1558	0,5746	0,0098	2865	19	2928	158	2926	63	-2
21108_16	0.37	0,1225	0,0014	5,8382	0,0647	0,336	0,0056	1990	20	1952	65	1867	35	6
21108_17	0.66	0,1188	0,0023	5,732	0,0968	0,348	0,0096	1935	35	1936	98	1925	61	0
21108_18	0.77	0,1847	0,0025	12,9399	0,1595	0,4975	0,009	2690	22	2675	161	2603	58	3
Na	ть/П			Изотопные от	ношения					Возраст, мл	ін лет			D, %
----------	------	-------------	--------	--------------	---------	------------	--------	-------------	----	-------------	--------	------------	----	------
J15	11/0	207Pb/206Pb	1σ	207Pb/235U	1σ	206Pb/238U	1σ	207Pb/206Pb	1σ	207Pb/235U	1σ	206Pb/238U	1σ	
21108_19	0.88	0,1118	0,0017	4,515	0,0679	0,2898	0,0059	1825	27	1733	68	1640	37	10
21108_2	0.61	0,1106	0,0021	4,6592	0,0987	0,3029	0,0068	1805	35	1759	100	1705	43	5
21108_20	0.79	0,1145	0,0022	4,6743	0,1043	0,2846	0,0062	1870	35	1762	105	1614	40	13
21108_21	0.72	0,1167	0,0035	5,2919	0,1471	0,3249	0,0096	1905	53	1867	149	1813	61	4
21108_22	0.47	0,126	0,0028	4,0792	0,0746	0,2278	0,0051	2040	39	1650	75	1322	33	35
21108_23	0.71	0,1128	0,0017	5,1996	0,0794	0,3292	0,0064	1840	28	1852	80	1834	41	0
21108_24	0.60	0,1237	0,0024	5,5715	0,0986	0,3213	0,0056	2010	34	1911	100	1795	36	10
21108_25	0.51	0,1142	0,0022	5,0172	0,073	0,3189	0,0054	1865	34	1822	74	1784	35	4
21108_26	0.50	0,1147	0,0017	5,5616	0,0703	0,346	0,0062	1870	26	1910	71	1915	40	-2
21108_27	0.52	0,1183	0,0021	4,9123	0,1059	0,2904	0,0073	1925	31	1804	107	1643	47	14
21108_28	0.42	0,1019	0,001	1,5917	0,0254	0,1092	0,0019	1655	17	966	25	668	12	59
21108_29	0.83	0,1136	0,004	4,4758	0,1367	0,2864	0,0103	1855	64	1726	138	1623	66	12
21108_3	0.70	0,1157	0,0037	5,108	0,1844	0,3254	0,0142	1885	57	1837	187	1816	91	3
21108_30	0.60	0,1131	0,0028	5,0997	0,1076	0,3229	0,0073	1845	44	1836	109	1803	47	2
21108_31	0.42	0,1257	0,0045	5,9712	0,1689	0,3412	0,0126	2035	64	1971	171	1892	81	7
21108_32	0.37	0,1101	0,0029	4,4826	0,0935	0,2882	0,0071	1800	47	1727	94	1632	45	9
21108_33	0.65	0,1103	0,0015	5,2439	0,0649	0,3353	0,0056	1800	24	1859	65	1864	35	-3
21108_34	0.29	0,1366	0,0031	5,6363	0,1146	0,2906	0,0068	2180	39	1921	116	1644	44	24
21108_35	0.77	0,1139	0,0018	5,1415	0,0774	0,3206	0,0063	1860	29	1842	78	1792	40	3
21108_36	0.79	0,1123	0,0029	4,9371	0,1566	0,3093	0,0117	1835	46	1808	158	1737	75	5
21108_37	0.47	0,122	0,0063	5,2154	0,2142	0,3141	0,0141	1980	91	1855	217	1760	90	11
21108_38	0.52	0,1131	0,0021	4,9981	0,071	0,3138	0,006	1845	33	1818	72	1759	38	4
21108_39	0.95	0,1128	0,0023	5,2602	0,0937	0,3273	0,0064	1840	36	1862	95	1825	41	0
21108_4	0.52	0,1251	0,001	6,6586	0,0492	0,3802	0,0053	2030	14	2067	49	2077	34	-2
21108_41	0.82	0,1491	0,002	7,6184	0,113	0,3629	0,0059	2330	22	2187	114	1995	37	14
21108_42	0.50	0,1124	0,0021	4,8774	0,0976	0,3074	0,0061	1835	34	1798	99	1727	39	5
21108_43	0.75	0,126	0,0018	6,9711	0,1009	0,3812	0,0075	2040	25	2107	102	2081	48	-2
21108_44	0.59	0,1102	0,0013	5,0884	0,0514	0,3245	0,0058	1800	20	1834	52	1811	37	0

NG.	T L/II			Изотопные от	ношения					Возраст, мл	ін лет			D, %
JNG	11/0	207Pb/206Pb	1σ	207Pb/235U	1σ	206Pb/238U	1σ	207Pb/206Pb	1σ	207Pb/235U	1σ	206Pb/238U	1σ	
21108_45	0.91	0,1128	0,0015	5,1915	0,0689	0,3268	0,0058	1840	24	1851	69	1822	37	0
21108_46	0.76	0,1179	0,0053	4,2573	0,1937	0,2799	0,0151	1920	80	1685	196	1590	97	17
21108_47	0.51	0,1121	0,0015	5,1263	0,074	0,3249	0,0064	1830	24	1840	75	1813	40	0
21108_48	0.43	0,1167	0,0018	5,2188	0,08	0,322	0,0057	1905	28	1855	81	1799	36	5
21108_49	0.55	0,1107	0,0009	5,1454	0,0494	0,3291	0,005	1810	15	1843	50	1833	32	-1
21108_5	0.93	0,1127	0,0014	5,0305	0,0544	0,3182	0,0052	1840	22	1824	55	1780	33	3
21108_51	0.87	0,1099	0,0015	5,0061	0,0751	0,3204	0,006	1795	24	1820	76	1791	38	0
21108_52	0.48	0,112	0,0014	5,0659	0,051	0,3202	0,0053	1830	21	1830	51	1790	34	2
21108_53	0.75	0,1224	0,0021	5,8742	0,1195	0,3397	0,0071	1990	30	1957	121	1885	45	5
21108_55	0.47	0,1476	0,0022	8,1003	0,159	0,3944	0,0094	2315	25	2242	161	2143	60	7
21108_56	0.74	0,1127	0,0015	5,1989	0,0714	0,3313	0,0059	1840	24	1852	72	1844	38	0
21108_57	0.50	0,1211	0,0023	5,5418	0,115	0,3305	0,0083	1970	33	1907	116	1840	53	6
21108_58	0.49	0,1249	0,0041	5,5929	0,1493	0,3313	0,0085	2025	58	1915	151	1844	55	8
21108_59	0.39	0,2375	0,0072	16,5401	0,4591	0,5244	0,0182	3100	48	2908	466	2717	117	12
21108_6	0.70	0,1091	0,0017	4,8008	0,0889	0,3073	0,0058	1780	28	1785	90	1727	37	2
21108_61	0.96	0,1124	0,0013	5,1511	0,0602	0,327	0,0053	1835	21	1844	61	1823	34	0
21108_62	0.38	0,2145	0,004	15,3507	0,2985	0,5208	0,0147	2935	30	2837	303	2702	94	7
21108_63	0.69	0,1151	0,0022	5,1816	0,0882	0,3306	0,0069	1880	34	1849	89	1841	44	2
21108_64	0.65	0,1115	0,002	5,2187	0,0871	0,3356	0,0065	1820	32	1855	88	1865	42	-2
21108_65	0.62	0,1147	0,0018	5,149	0,0786	0,3296	0,0063	1870	28	1844	79	1836	40	1
21108_66	0.73	0,1272	0,0022	6,399	0,1038	0,3697	0,0067	2055	30	2032	105	2028	43	1
21108_67	0.35	0,1195	0,0015	5,9635	0,0689	0,3609	0,0058	1945	21	1970	69	1986	37	-2
21108_68	0.48	0,1155	0,0013	5,1881	0,0587	0,3262	0,0054	1885	20	1850	59	1819	35	3
21108_69	0.51	0,1185	0,0017	5,2956	0,0671	0,3265	0,006	1930	25	1868	68	1821	38	5
21108_7	0.53	0,1109	0,0016	4,8944	0,0698	0,3236	0,0056	1810	26	1801	70	1807	36	0
21108_71	0.70	0,1146	0,0018	5,0953	0,0683	0,325	0,0061	1870	28	1835	69	1814	39	2
21108_72	0.52	0,1128	0,0013	5,0973	0,0513	0,3312	0,0056	1840	21	1835	52	1844	36	0
21108_73	0.52	0,1126	0,0017	5,2088	0,0668	0,3333	0,007	1840	27	1854	67	1854	45	0

N G-	TL /I I			Изотопные от	ношения					Возраст, мл	ін лет			D, %
JIG	11/0	207Pb/206Pb	1σ	207Pb/235U	1σ	206Pb/238U	1σ	207Pb/206Pb	1σ	207Pb/235U	1σ	206Pb/238U	1σ	
21108_74	0.59	0,115	0,0015	5,1371	0,0634	0,3267	0,0062	1875	23	1842	64	1822	39	2
21108_75	0.65	0,1169	0,0023	5,1702	0,0916	0,3254	0,0062	1905	35	1847	93	1816	39	4
21108_76	0.51	0,1221	0,0016	6,1159	0,0842	0,3624	0,0061	1985	23	1992	85	1993	39	0
21108_77	0.97	0,113	0,0017	5,1424	0,0649	0,333	0,0059	1845	26	1843	65	1852	37	0
21108_78	0.58	0,1137	0,0028	5,0684	0,0957	0,3221	0,0076	1855	44	1830	97	1799	49	2
21108_79	1.00	0,1252	0,0025	5,2748	0,0975	0,3106	0,0083	2030	35	1864	99	1743	53	14
21108_8	0.82	0,1156	0,0018	5,1617	0,0773	0,319	0,006	1885	28	1846	78	1784	38	5
21108_81	0.93	0,1369	0,0019	7,4552	0,1061	0,3916	0,0071	2185	24	2167	107	2130	46	2
21108_82	0.63	0,1057	0,0012	4,5574	0,0597	0,3089	0,0052	1725	21	1741	60	1735	33	0
21108_83	0.87	0,1128	0,0014	5,373	0,0601	0,3392	0,0054	1840	21	1880	61	1883	34	-2
21108_84	0.55	0,1101	0,0018	4,9802	0,0772	0,3244	0,006	1800	30	1815	78	1811	38	0
21108_85	0.67	0,1224	0,0038	4,8907	0,1369	0,2952	0,0094	1990	55	1800	139	1667	60	16
21108_86	0.84	0,1091	0,0088	4,9599	0,4385	0,3194	0,0057	1780	146	1812	445	1786	36	0
21108_88	0.17	0,0909	0,0073	1,4716	0,129	0,1094	0,002	1440	154	918	131	669	12	53
21108_89	0.32	0,1062	0,0086	2,7152	0,2448	0,1747	0,0049	1730	149	1332	248	1038	31	39
21108_9	0.66	0,1118	0,0014	5,0307	0,0799	0,3229	0,0064	1825	23	1824	81	1803	41	1
21108_90	1.74	0,1775	0,015	11,3029	1,0633	0,4674	0,0145	2625	141	2548	1079	2472	93	5
21108_91	0.89	0,1062	0,0086	5,0262	0,4444	0,3249	0,0076	1730	148	1823	451	1813	48	-4
21108_92	0.67	0,1152	0,0093	5,7729	0,5072	0,3387	0,0064	1880	145	1942	514	1880	41	0
21108_93	0.99	0,1049	0,0085	4,9247	0,4336	0,3166	0,0062	1710	148	1806	440	1773	40	-3
21108_96	0.62	0,1069	0,0089	4,881	0,4449	0,3273	0,0086	1745	152	1798	451	1825	55	-4
21108_97	0.54	0,1057	0,0089	4,8792	0,4382	0,3175	0,0087	1725	154	1798	444	1777	56	-3
21108_98	0.53	0,1006	0,0083	4,5757	0,4059	0,307	0,0084	1630	152	1744	412	1725	53	-5
					213	5 (иликтинск	сая свита	ı)						
2135_1	0.53546	0.1229	0.0029	5.622	0.3261	0.3362	0.0127	1995	41	1919	331	1868	82	6
2135_10	0.643677	0.1213	0.0045	6.0062	0.3969	0.3626	0.0205	1970	65	1976	402	1994	132	-1
2135_100	0.586547	0.114	0.0026	5.2245	0.1664	0.3296	0.0061	1860	40	1856	169	1836	39	1
2135_101	0.454705	0.1232	0.0017	4.4251	0.1204	0.2509	0.0047	2000	24	1717	122	1443	30	27

No	Th/II			Изотопные от	ношения					Возраст, мл	ін лет			D, %
JIE	11/0	207Pb/206Pb	1σ	207Pb/235U	1σ	206Pb/238U	1σ	207Pb/206Pb	1σ	207Pb/235U	1σ	206Pb/238U	1σ	
2135_102	1.681807	0.1281	0.0028	6.378	0.2669	0.3631	0.0108	2070	39	2029	271	1996	69	3
2135_103	0.654333	0.2246	0.0036	19.2624	0.5211	0.6065	0.01	3010	26	3055	529	3055	64	-1
2135_104	0.370657	0.1755	0.0023	11.0062	0.3264	0.4406	0.0087	2605	22	2523	331	2353	56	9
2135_105	0.052192	0.1442	0.0028	8.7215	0.247	0.4298	0.0067	2275	33	2309	250	2305	43	-1
2135_106	0.67436	0.1442	0.0025	8.6964	0.2753	0.4261	0.0078	2275	30	2306	279	2288	50	0
2135_107	0.495192	0.1518	0.0019	9.7733	0.2521	0.4567	0.0061	2365	20	2413	256	2425	39	-2
2135_108	0.609044	0.1439	0.0018	8.8761	0.2343	0.4325	0.0066	2270	21	2325	237	2316	42	-2
2135_109	0.211657	0.1604	0.0031	10.5904	0.3197	0.4636	0.0077	2455	33	2487	324	2455	49	0
2135_11	0.14451	0.1445	0.0029	8.6954	0.4877	0.4307	0.0147	2280	35	2306	495	2308	94	-1
2135_110	0.528585	0.1458	0.0018	8.8488	0.2261	0.4261	0.0058	2295	21	2322	229	2288	37	0
2135_111	0.539929	0.1218	0.0028	5.4127	0.2295	0.3317	0.009	1980	40	1886	232	1846	58	6
2135_112	0.326768	0.1598	0.0018	10.3608	0.2536	0.4634	0.0055	2450	18	2467	257	2454	35	0
2135_113	1.357584	0.1616	0.0027	10.3245	0.3162	0.4567	0.0107	2470	27	2464	321	2424	68	1
2135_114	0.75372	0.2054	0.0038	16.5443	0.4541	0.5636	0.0094	2865	30	2908	461	2881	60	0
2135_12	0.376394	0.1376	0.0039	7.2202	0.5074	0.374	0.0188	2195	49	2138	515	2048	121	6
2135_13	0.23288	0.1434	0.005	7.4362	0.6232	0.3969	0.0212	2265	60	2165	632	2154	136	4
2135_14	0.695851	0.1212	0.0194	5.1251	0.9115	0.2984	0.0126	1970	286	1840	925	1683	81	14
2135_15	0.678551	0.1178	0.0189	6.3109	1.1061	0.3605	0.0166	1920	287	2019	1123	1984	106	-3
2135_16	0.58093	0.1784	0.0056	5.825	0.2076	0.2288	0.0091	2635	51	1950	210	1328	58	49
2135_17	0.629675	0.1136	0.0055	4.4585	0.2889	0.3065	0.0197	1855	88	1723	293	1723	126	7
2135_18	0.254201	0.1109	0.0037	4.0808	0.1571	0.2587	0.0098	1810	60	1650	159	1483	63	18
2135_19	1.310603	0.1248	0.0042	6.3435	0.2347	0.3485	0.0139	2025	59	2024	238	1927	89	4
2135_2	0.630858	0.1887	0.0045	13.5184	0.7825	0.5232	0.0196	2730	39	2716	794	2712	126	0
2135_20	0.550313	0.1668	0.0061	12.4946	0.4849	0.5165	0.0218	2525	61	2642	492	2684	140	-6
2135_21	0.419254	0.1399	0.0063	8.7252	0.4253	0.439	0.02	2220	78	2309	431	2346	128	-5
2135_22	0.469142	0.1388	0.0092	6.5611	0.3324	0.3616	0.0208	2210	115	2054	337	1989	133	9
2135_23	0.491174	0.1493	0.0093	9.1795	0.564	0.4297	0.0282	2335	106	2356	572	2304	181	1
2135_24	0.377357	0.1537	0.0051	8.6025	0.5781	0.4303	0.0187	2385	56	2296	586	2306	120	3

No	Th/II			Изотопные от	ношения					Возраст, мл	ін лет			D, %
JIE	11/0	207Pb/206Pb	1σ	207Pb/235U	1σ	206Pb/238U	1σ	207Pb/206Pb	1σ	207Pb/235U	1σ	206Pb/238U	1σ	
2135_25	0.388678	0.2082	0.0082	17.9159	1.0921	0.595	0.0339	2890	63	2985	1108	3009	218	-4
2135_26	0.34907	0.1599	0.0055	4.2852	0.1838	0.1846	0.0081	2450	58	1690	186	1092	52	55
2135_27	0.302479	0.1824	0.0074	11.9024	0.5916	0.4902	0.0247	2670	67	2596	600	2571	159	3
2135_28	0.911509	0.1227	0.0042	6.2568	0.2378	0.3626	0.0149	1990	61	2012	241	1994	96	0
2135_3	1.571397	0.1228	0.0028	6.317	0.3559	0.3738	0.013	1995	39	2020	361	2047	83	-2
2135_30	0.766216	0.1388	0.0047	8.0632	0.2921	0.4151	0.0163	2210	58	2238	296	2238	105	-1
2135_31	0.830458	0.1856	0.0065	9.8492	0.3937	0.3903	0.0191	2700	57	2420	399	2124	123	21
2135_32	0.44998	0.1474	0.0047	7.0595	0.2461	0.3308	0.0125	2315	54	2118	249	1842	80	20
2135_33	0.502939	0.1413	0.0048	8.93	0.3541	0.4352	0.0165	2240	59	2330	359	2328	106	-3
2135_34	0.568343	0.1167	0.0048	6.3011	0.2452	0.3713	0.0156	1905	74	2018	248	2035	100	-6
2135_35	0.238122	0.1381	0.0044	8.6535	0.3027	0.4341	0.0161	2200	55	2302	307	2324	104	-5
2135_36	0.239352	0.1359	0.0048	8.5149	0.3427	0.4352	0.0179	2170	61	2287	347	2329	115	-7
2135_37	0.872762	0.166	0.0069	12.4234	0.5163	0.5131	0.0228	2515	69	2636	524	2669	147	-6
2135_38	0.709426	0.1554	0.0051	3.5189	0.1457	0.1628	0.0068	2405	56	1531	147	972	43	59
2135_39	0.664027	0.137	0.0047	4.201	0.1637	0.2206	0.0105	2185	59	1674	166	1285	67	41
2135_4	0.835218	0.1422	0.0023	7.7673	0.4378	0.3961	0.0129	2250	28	2204	444	2151	83	4
2135_40	0.710826	0.1072	0.0039	3.661	0.1585	0.2398	0.0101	1750	67	1562	160	1385	64	20
2135_41	0.633043	0.1461	0.0048	3.9523	0.1424	0.1878	0.0074	2300	56	1624	144	1109	47	51
2135_42	0.375149	0.1628	0.0063	5.5463	0.3057	0.2425	0.0128	2480	65	1907	310	1399	82	43
2135_43	0.121221	0.1212	0.0062	5.7699	0.3015	0.3499	0.0203	1970	91	1941	306	1933	130	1
2135_44	0.349498	0.1515	0.0051	9.2471	0.3657	0.4388	0.0167	2360	57	2362	371	2345	107	0
2135_45	0.42775	0.2408	0.0115	20.116	0.927	0.617	0.0298	3120	76	3096	941	3097	192	0
2135_46	1.275775	0.1457	0.0063	8.448	0.3699	0.4326	0.0211	2295	74	2280	375	2317	136	0
2135_47	1.016191	0.1234	0.0071	5.4645	0.2742	0.3475	0.0228	2005	101	1895	278	1922	146	4
2135_48	0.882649	0.1123	0.0013	3.8747	0.0955	0.2478	0.0032	1835	20	1608	96	1426	20	22
2135_49	0.234887	0.1288	0.0016	5.9951	0.1604	0.3233	0.0049	2080	22	1975	162	1805	31	13
2135_5	0.591003	0.2106	0.006	15.8748	0.9637	0.5518	0.019	2905	46	2869	978	2832	122	2
2135_50	0.599886	0.1272	0.0021	4.2081	0.1266	0.2293	0.0036	2055	29	1675	128	1330	23	35

No	Tb/I⊺			Изотопные от	ношения					Возраст, мл	ін лет			D, %
JIT	11/0	207Pb/206Pb	1σ	207Pb/235U	1σ	206Pb/238U	1σ	207Pb/206Pb	1σ	207Pb/235U	1σ	206Pb/238U	1σ	
2135_50	0.274005	0.171	0.0022	11.5208	0.3535	0.4894	0.0067	2565	21	2566	358	2568	42	0
2135_51	0.714864	0.1226	0.0021	6.1677	0.1953	0.3617	0.0065	1990	30	1999	198	1990	42	0
2135_52	0.804403	0.1489	0.0018	6.8224	0.2029	0.3167	0.006	2330	21	2088	205	1773	38	23
2135_53	0.473793	0.154	0.0021	9.9838	0.2534	0.4671	0.0059	2385	22	2433	257	2470	37	-3
2135_54	0.548645	0.1312	0.0015	4.8436	0.1274	0.26	0.0031	2110	20	1792	129	1489	20	29
2135_55	0.833707	0.1668	0.0034	11.7677	0.4062	0.5015	0.0121	2520	34	2586	412	2620	77	-3
2135_56	0.575338	0.1231	0.002	6.7346	0.1792	0.3801	0.0051	2000	28	2077	182	2076	32	-3
2135_57	1.024423	0.1717	0.0025	11.5277	0.392	0.4888	0.0092	2570	24	2566	398	2565	59	0
2135_58	1.424103	0.2225	0.0049	16.7406	0.5484	0.57	0.0125	2995	35	2920	556	2907	80	2
2135_59	0.29913	0.1373	0.0037	6.1715	0.2938	0.3532	0.0094	2190	46	2000	298	1949	60	10
2135_6	6.046152	0.1651	0.0131	8.7751	1.0436	0.4011	0.0205	2505	133	2314	1059	2173	132	13
2135_61	0.554432	0.1207	0.0026	5.8634	0.2157	0.3543	0.0081	1965	38	1955	218	1955	52	0
2135_62	0.444962	0.1498	0.0013	9.5936	0.2483	0.4569	0.0069	2340	14	2396	252	2425	44	-3
2135_63	0.542272	0.1204	0.002	6.002	0.1966	0.3583	0.0059	1960	29	1976	199	1973	37	0
2135_64	0.648767	0.2215	0.0037	16.8152	0.4678	0.5381	0.0083	2990	26	2924	475	2775	53	7
2135_65	0.783411	0.2122	0.0053	16.5257	0.5808	0.5696	0.0135	2920	40	2907	589	2906	87	0
2135_66	0.508011	0.1289	0.0023	4.4466	0.1509	0.2548	0.0055	2080	31	1721	153	1462	35	29
2135_67	0.439787	0.1301	0.0033	4.7036	0.1733	0.2627	0.0067	2095	44	1767	175	1503	43	28
2135_68	0.814736	0.1187	0.0036	5.7971	0.2564	0.3491	0.0076	1935	54	1945	260	1930	48	0
2135_69	0.115738	0.1351	0.0022	3.6144	0.1003	0.1915	0.0027	2160	28	1552	101	1129	17	47
2135_7	1.420956	0.1534	0.0032	9.538	0.5394	0.4498	0.0158	2380	35	2391	547	2394	102	0
2135_70	1.303544	0.208	0.0025	16.8623	0.4456	0.5747	0.0085	2885	19	2927	452	2926	54	-1
2135_71	0.717298	0.1461	0.0036	9.1158	0.2565	0.4358	0.0097	2300	41	2349	260	2331	62	-1
2135_72	0.855735	0.231	0.0138	12.4096	0.9509	0.3656	0.0095	3055	95	2635	965	2008	60	34
2135_73	0.726933	0.1373	0.0016	6.0895	0.1565	0.3082	0.0036	2190	20	1988	158	1731	23	20
2135_74	0.542211	0.1316	0.0017	6.6637	0.173	0.3451	0.0051	2115	22	2067	175	1911	32	9
2135_75	0.894035	0.1332	0.0015	5.4717	0.1515	0.2837	0.0044	2135	19	1896	153	1610	28	24
2135_76	2.835581	0.1616	0.002	10.7916	0.2922	0.4699	0.006	2470	21	2505	296	2483	38	0

NG	701⊾/II I			Изотопные от	ношения					Возраст, мл	ін лет			D, %
JIG	11/0	207Pb/206Pb	1σ	207Pb/235U	1σ	206Pb/238U	1σ	207Pb/206Pb	1σ	207Pb/235U	1σ	206Pb/238U	1σ	
2135_77	0.590604	0.1207	0.0024	6.2662	0.1709	0.3613	0.0068	1965	36	2013	173	1988	43	-1
2135_78	0.913912	0.2228	0.0033	18.8348	0.5443	0.5956	0.0105	3000	24	3033	552	3011	67	0
2135_79	0.389194	0.1717	0.0026	11.5646	0.3828	0.4849	0.0074	2570	25	2569	388	2548	47	0
2135_8	1.180891	0.1398	0.0041	7.3848	0.4722	0.388	0.0168	2220	50	2159	479	2113	108	4
2135_80	1.539597	0.1192	0.0033	4.5329	0.1573	0.277	0.0074	1940	49	1737	159	1576	47	18
2135_81	1.4717	0.1441	0.0022	8.9348	0.2412	0.4325	0.0064	2275	26	2331	244	2316	40	-1
2135_82	0.622403	0.1607	0.0048	10.0916	0.3901	0.4528	0.0117	2460	50	2443	396	2407	75	2
2135_83	0.425874	0.1238	0.0024	6.4198	0.1991	0.3655	0.0069	2010	34	2034	202	2008	44	0
2135_84	0.814986	0.1487	0.0034	6.9039	0.2152	0.3235	0.0081	2330	38	2099	218	1806	52	22
2135_85	0.903094	0.1281	0.0017	6.0905	0.1756	0.3282	0.0055	2070	22	1988	178	1829	35	11
2135_86	0.764762	0.13	0.002	4.2036	0.1519	0.2285	0.0053	2095	26	1674	154	1326	33	36
2135_87	0.308816	0.1189	0.002	4.7781	0.1717	0.2733	0.0086	1935	29	1781	174	1557	55	19
2135_88	0.527841	0.1227	0.0021	6.1575	0.1694	0.3421	0.0054	1995	31	1998	172	1896	34	4
2135_89	1.218973	0.21	0.0037	9.2569	0.3266	0.3121	0.0095	2900	28	2363	331	1751	61	39
2135_9	1.765679	0.1523	0.004	6.2437	0.5007	0.3114	0.0225	2370	44	2010	508	1747	145	26
2135_90	0.99439	0.1271	0.0018	3.4287	0.098	0.1877	0.004	2055	24	1510	99	1109	26	46
2135_91	2.316724	0.1502	0.0025	5.0881	0.1578	0.2312	0.0047	2345	28	1834	160	1340	30	42
2135_92	0.776639	0.1495	0.0055	6.8723	0.387	0.3723	0.0141	2335	63	2095	392	2040	91	12
2135_93	0.347451	0.14	0.0043	3.6033	0.0977	0.1834	0.005	2225	52	1550	99	1085	32	51
2135_94	0.800554	0.219	0.0102	4.9222	0.3323	0.1531	0.0042	2970	75	1806	337	918	26	69
2135_95	0.671051	0.1531	0.0023	10.121	0.2786	0.4663	0.0081	2380	26	2445	282	2467	52	-3
2135_96	0.632421	0.1243	0.0017	5.2183	0.1912	0.2939	0.0051	2015	23	1855	194	1661	33	17
2135_97	0.942505	0.1455	0.0052	3.7172	0.2446	0.1933	0.0061	2290	62	1575	248	1139	39	50
2135_98	1.058733	0.1712	0.0035	12.0613	0.3642	0.499	0.011	2565	34	2609	369	2609	70	-1
2135_99	0.496805	0.1227	0.0021	6.417	0.1867	0.3697	0.0064	1995	30	2034	189	2027	40	-1
	-			-	220	5 (иликтинск	сая свита	l)		-		1		•
2205-100	1.062823	0.1517	0.0034	9.5194	0.4582	0.4557	0.0085	2360	37	2389	465	2420	54	-2
2205-101	0.093207	0.1372	0.0028	7.9744	0.3805	0.4208	0.0069	2190	35	2228	386	2263	44	-3

No	Th/II			Изотопные от	ношения					Возраст, мл	ін лет			D, %
JNG	III/U	207Pb/206Pb	1σ	207Pb/235U	1σ	206Pb/238U	1σ	207Pb/206Pb	1σ	207Pb/235U	1σ	206Pb/238U	1σ	-
2205-102	0.460273	0.118	0.0026	5.705	0.276	0.3493	0.0062	1925	39	1932	280	1931	40	0
2205-103	0.174512	0.204	0.0045	16.4146	0.7907	0.5797	0.012	2855	35	2901	802	2947	77	-3
2205-104	0.77465	0.13	0.0026	6.9798	0.3364	0.389	0.007	2095	35	2108	341	2118	45	-1
2205-105	0.530399	0.1472	0.0035	6.1123	0.3098	0.3007	0.0079	2310	40	1991	314	1694	50	26
2205-106	0.460063	0.12	0.0023	5.9546	0.285	0.3603	0.0057	1955	34	1969	289	1983	36	-1
2205-107	0.834585	0.1433	0.0033	8.5837	0.4296	0.434	0.0104	2265	39	2294	436	2323	66	-2
2205-108	0.959168	0.1342	0.003	7.0101	0.3654	0.3774	0.011	2150	39	2112	370	2064	70	3
2205-109	1.382039	0.2658	0.0093	6.5632	0.3306	0.2033	0.0084	3280	54	2054	335	1193	54	63
2205-110	0.51206	0.2115	0.0044	17.141	0.8278	0.5832	0.0102	2915	33	2942	840	2961	65	-1
2205-111	0.590071	0.1357	0.0028	3.5329	0.1735	0.1896	0.004	2170	36	1534	176	1119	25	48
2205-112	0.280801	0.2067	0.0049	15.245	0.7367	0.538	0.0118	2875	38	2830	748	2775	75	3
2205-113	0.228651	0.1385	0.0031	8.205	0.3998	0.4284	0.0085	2205	38	2253	405	2298	54	-4
2205-114	0.360531	0.1419	0.0031	8.457	0.4095	0.4333	0.0084	2245	37	2281	415	2320	53	-3
2205-115	0.623956	0.1317	0.0028	7.3193	0.3548	0.4005	0.0073	2115	37	2151	360	2171	46	-2
2205-116	1.334191	0.1704	0.0039	11.378	0.5557	0.4802	0.0092	2560	38	2554	564	2528	59	1
2205-117	0.256689	0.1541	0.003	9.3799	0.4454	0.439	0.0071	2390	33	2375	452	2346	45	1
2205-118	0.573768	0.2713	0.0067	4.7514	0.2521	0.1256	0.0026	3310	38	1776	256	762	16	76
2205-119	0.985917	0.1967	0.0052	14.1973	0.7067	0.5278	0.0133	2795	43	2762	717	2732	85	2
2205-120	1.042386	0.1411	0.0038	7.8608	0.3838	0.4105	0.0101	2240	46	2215	389	2217	64	1
2205-121	0.670522	0.1261	0.0026	6.4928	0.3101	0.3731	0.0064	2040	37	2044	314	2043	40	0
2205-122	0.763301	0.1463	0.0032	8.5367	0.4132	0.4231	0.0078	2300	37	2289	419	2274	50	1
2205-123	0.781066	0.1465	0.0036	8.7057	0.4242	0.4334	0.0095	2300	42	2307	430	2321	61	0
2205-124	0.405878	0.1298	0.0031	6.7741	0.3273	0.3808	0.008	2090	41	2082	332	2080	51	0
2205-125	1.055005	0.1192	0.0024	3.4395	0.1704	0.2077	0.0041	1940	36	1513	173	1216	26	37
2205-126	0.417017	0.2337	0.0052	20.4529	1.006	0.6289	0.0108	3075	35	3113	1021	3145	69	-2
2205-127	0.532133	0.166	0.004	10.8887	0.5497	0.4637	0.0085	2515	40	2513	558	2455	54	2
2205-128	0.456197	0.119	0.0026	5.5092	0.2639	0.333	0.0064	1935	38	1902	267	1852	41	4
2205-129	0.487107	0.1232	0.0024	6.3735	0.3033	0.3687	0.0054	2000	34	2028	307	2023	34	-1

No	Th/II			Изотопные от	ношения					Возраст, мл	ін лет			D, %
JNG	11/0	207Pb/206Pb	1σ	207Pb/235U	1σ	206Pb/238U	1σ	207Pb/206Pb	1σ	207Pb/235U	1σ	206Pb/238U	1σ	-
2205-130	0.493522	0.1437	0.0037	5.7614	0.3089	0.298	0.0074	2270	44	1940	313	1681	47	25
2205-131	1.430379	0.1234	0.0026	5.3678	0.2592	0.3117	0.0052	2005	37	1879	263	1749	33	12
2205-132	0.621278	0.1551	0.0033	9.6234	0.4621	0.4459	0.0074	2400	35	2399	469	2377	47	0
2205-133	0.828352	0.234	0.0063	19.5326	0.9773	0.5996	0.0137	3075	43	3068	992	3028	88	1
2205-134	0.429706	0.1353	0.0029	7.6331	0.3703	0.408	0.0075	2165	37	2188	376	2205	48	-1
2205-135	0.626226	0.1736	0.0046	3.9358	0.1996	0.1631	0.0028	2590	44	1621	202	973	17	62
2205-136	0.432319	0.1217	0.0023	4.6849	0.2266	0.2767	0.0049	1980	34	1764	230	1574	31	20
2205-137	0.176855	0.1969	0.0044	15.4375	0.7595	0.55	0.0123	2800	36	2842	771	2825	78	0
2205-138	0.721489	0.125	0.0025	6.4828	0.3115	0.3721	0.0059	2025	34	2043	316	2039	37	0
2205-139	0.508582	0.2225	0.0047	18.3381	0.8772	0.5862	0.0099	2995	33	3007	890	2973	63	0
2205-140	1.128669	0.142	0.0027	8.577	0.4096	0.4306	0.0063	2250	33	2294	415	2308	40	-2
2205-141	1.566082	0.2021	0.0038	16.1109	0.7681	0.5671	0.0086	2840	30	2883	779	2896	55	-1
2205-142	0.96047	0.1659	0.0033	11.0545	0.535	0.475	0.0079	2515	33	2527	543	2505	50	0
2205-143	0.663804	0.1216	0.0022	6.265	0.2982	0.3666	0.0043	1975	32	2013	302	2013	27	-1
2205-144	0.418668	0.177	0.0042	2.8596	0.1384	0.1154	0.0018	2620	39	1371	140	704	11	73
2205-145	0.603804	0.2477	0.0046	22.321	1.0692	0.6407	0.0093	3165	29	3197	1085	3191	59	0
2205-146	0.545155	0.1232	0.0024	6.3047	0.3023	0.3642	0.005	2000	33	2019	306	2002	32	0
2205-147	0.435695	0.149	0.0028	9.1957	0.436	0.4379	0.0056	2330	31	2357	442	2341	36	0
2205-148	0.634201	0.1778	0.0035	7.3656	0.3505	0.2905	0.0038	2630	32	2156	355	1643	24	37
2205-149	0.388103	0.1463	0.0028	8.9695	0.4269	0.4343	0.006	2300	32	2334	433	2325	38	-1
2205-150	0.884694	0.1224	0.0022	5.2703	0.2529	0.3043	0.004	1990	32	1864	256	1712	25	13
2205-151	0.681591	0.2463	0.005	21.3446	1.0289	0.6137	0.0106	3160	32	3154	1044	3084	68	2
2205-88	0.979184	0.2043	0.0053	16.6491	0.8193	0.5921	0.0148	2860	42	2914	831	2998	95	-4
2205-89	0.486882	0.2189	0.0048	17.5082	0.8507	0.5774	0.0126	2970	35	2963	863	2938	81	1
2205-90	0.689931	0.1357	0.0039	7.3463	0.3758	0.3959	0.0113	2170	49	2154	381	2150	72	0
2205-91	0.583648	0.1414	0.0031	8.4213	0.4054	0.4282	0.0074	2240	37	2277	411	2297	47	-2
2205-92	0.441872	0.1167	0.0029	5.5491	0.271	0.3455	0.007	1905	44	1908	275	1912	45	0
2205-93	0.49279	0.143	0.0033	7.9149	0.383	0.4028	0.0089	2260	39	2221	388	2182	57	3

NG-	Th /I I			Изотопные от	ношения					Возраст, мл	ін лет			D, %
JNE	11/0	207Pb/206Pb	1σ	207Pb/235U	1σ	206Pb/238U	1σ	207Pb/206Pb	1σ	207Pb/235U	1σ	206Pb/238U	1σ	
2205-94	0.566461	0.2284	0.0058	18.2305	0.9312	0.5786	0.0154	3035	40	3001	945	2943	99	3
2205-95	0.912883	0.2464	0.0055	21.9923	1.0632	0.6464	0.011	3160	35	3183	1079	3214	71	-1
2205-96	0.493423	0.1729	0.0034	12.0281	0.575	0.5015	0.0085	2585	33	2606	583	2620	54	-1
2205-97	0.445867	0.144	0.0036	8.6308	0.4287	0.4339	0.0099	2270	43	2299	435	2323	63	-2
2205-98	0.291913	0.1969	0.0051	7.7847	0.4014	0.2893	0.0079	2800	42	2206	407	1638	50	41
2205-99	0.405672	0.192	0.0038	14.727	0.6999	0.5551	0.0082	2755	32	2797	710	2846	53	-3
	-	-			081	5 (иликтинск	сая свита	ı)	-					
0815_1	0.632299	0.1312	0.0033	7.0897	0.2989	0.3926	0.015	2110	43	2122	303	2134	96	-1
0815_10	0.419252	0.188	0.0048	13.7621	0.5818	0.5314	0.0203	2720	42	2733	590	2747	130	-1
0815_11	0.165636	0.1464	0.004	8.5169	0.3708	0.4151	0.0163	2300	46	2287	376	2238	105	2
0815_12	0.473629	0.1197	0.0036	6.1542	0.3073	0.3672	0.0175	1950	53	1997	312	2016	112	-3
0815_13	0.708959	0.1385	0.0077	6.6325	0.3356	0.3575	0.0222	2205	97	2063	340	1970	143	10
0815_14	0.975169	0.2771	0.0067	15.1139	0.6695	0.3994	0.0168	3345	37	2822	679	2166	108	35
0815_15	0.744368	0.1261	0.0037	5.681	0.2596	0.3354	0.0146	2040	51	1928	263	1864	93	8
0815_16	0.478093	0.2329	0.0076	13.2912	0.6636	0.4401	0.0205	3070	52	2700	673	2351	132	23
0815_17	0.687147	0.1829	0.0042	12.5882	0.5444	0.4998	0.0197	2675	38	2649	552	2612	127	2
0815_18	1.838739	0.1645	0.0036	10.838	0.4515	0.4809	0.0176	2500	37	2509	458	2531	113	-1
0815_19	0.970475	0.2578	0.01	4.9224	0.3382	0.1333	0.0068	3230	61	1806	343	806	44	75
0815_2	0.634832	0.1413	0.0058	1.6972	0.0923	0.0947	0.005	2240	71	1007	93	583	32	73
0815_20	0.186555	0.1641	0.0032	10.6938	0.4411	0.4731	0.0169	2495	32	2496	447	2497	108	0
0815_21	0.507341	0.1233	0.0035	5.9786	0.2796	0.353	0.0158	2000	50	1972	283	1949	101	2
0815_22	0.567431	0.1849	0.0044	13.2	0.5376	0.524	0.0195	2695	39	2694	545	2716	125	0
0815_23	0.586953	0.1286	0.0039	4.5619	0.2055	0.2678	0.012	2075	52	1742	208	1529	77	26
0815_24	0.287907	0.1069	0.0034	1.6081	0.1122	0.1096	0.0053	1745	59	973	113	670	34	61
0815_25	0.358074	0.1317	0.0039	6.192	0.2697	0.3534	0.0154	2120	52	2003	273	1950	99	7
0815_26	0.103092	0.1292	0.0043	2.9269	0.1532	0.1687	0.0075	1915	59	1388	155	1004	48	51
0815_27	0.479004	0.1268	0.0034	4.2732	0.1904	0.2548	0.0107	2050	47	1688	193	1462	68	28
0815_28	0.738735	0.1219	0.0042	3.3723	0.1482	0.2174	0.0096	1980	60	1497	150	1267	61	35

NG				Изотопные от	ношения					Возраст, мл	н лет			D, %
JN⊵	11/0	207Pb/206Pb	1σ	207Pb/235U	1σ	206Pb/238U	1σ	207Pb/206Pb	1σ	207Pb/235U	1σ	206Pb/238U	1σ	
0815_29	0.3626	0.1607	0.0046	10.6255	0.5399	0.4751	0.0226	2460	48	2490	548	2505	145	-1
0815_3	0.969367	0.1411	0.0071	7.441	0.4927	0.3833	0.0247	2235	87	2165	500	2091	159	6
0815_30	0.479004	0.1294	0.0036	6.5585	0.284	0.3802	0.0161	2085	49	2053	288	2077	103	0
0815_31	1.941925	0.1198	0.0035	3.6902	0.1653	0.2288	0.0098	1950	51	1569	167	1328	63	31
0815_32	1.03926	0.121	0.0024	6.4067	0.2678	0.3848	0.0139	1965	34	2033	271	2098	89	-6
0815_33	0.970538	0.3316	0.012	6.9487	0.564	0.1485	0.0095	3620	55	2104	572	892	60	75
0815_34	0.838757	0.1278	0.0038	6.7659	0.2902	0.4012	0.0174	2065	52	2081	294	2174	112	-5
0815_35	0.684196	0.1884	0.0047	13.0439	0.5384	0.5137	0.0198	2725	41	2682	546	2672	127	1
0815_36	0.688142	0.1207	0.0045	1.7994	0.1158	0.1094	0.0059	1965	65	1045	117	669	38	65
0815_37	0.51009	0.1452	0.0031	8.5775	0.3501	0.4326	0.0157	2285	36	2294	355	2317	101	-1
0815_38	1.286435	0.1312	0.0045	2.3214	0.1108	0.1355	0.0056	2110	60	1218	112	819	36	61
0815_39	0.404693	0.1788	0.0063	13.7666	0.6392	0.5556	0.0291	2640	58	2733	649	2848	187	-7
0815_4	1.059276	0.1304	0.0043	5.9839	0.2914	0.3428	0.0168	2100	57	1973	295	1900	108	9
0815_40	0.411438	0.1237	0.0035	3.0484	0.1468	0.1792	0.0079	2005	50	1419	149	1062	50	46
0815_41	1.220962	0.1938	0.0057	5.2125	0.2628	0.197	0.0085	2770	48	1854	266	1159	54	58
0815_42	0.660188	0.0892	0.0028	1.0229	0.0467	0.0855	0.0036	1405	60	715	47	528	23	62
0815_43	0.690084	0.1263	0.0049	2.8272	0.1776	0.1692	0.008	2045	68	1362	180	1007	51	50
0815_44	0.413317	0.1195	0.0027	5.9187	0.2414	0.3621	0.014	1945	40	1963	245	1992	90	-2
0815_45	0.82351	0.1566	0.0043	5.5295	0.2677	0.2557	0.0119	2415	47	1905	271	1467	76	39
0815_46	0.620122	0.1365	0.0032	7.5981	0.3201	0.4141	0.0161	2180	41	2184	325	2233	103	-2
0815_47	0.156475	0.1068	0.0036	2.0702	0.1131	0.1457	0.0066	1740	61	1139	114	877	42	49
0815_48	0.659173	0.1109	0.0033	2.4502	0.138	0.1592	0.0071	1810	54	1257	140	952	45	47
0815_49	0.527254	0.138	0.006	1.1276	0.0892	0.0575	0.003	2200	75	766	90	360	19	83
0815_5	0.241433	0.0999	0.0049	1.6622	0.1212	0.1177	0.0066	1620	91	994	123	717	42	55
0815_50	0.82347	0.1327	0.0036	2.7867	0.1213	0.1568	0.0066	2130	47	1351	123	938	42	55
0815_51	0.479418	0.1302	0.0031	6.6418	0.2782	0.3755	0.0143	2100	42	2064	282	2055	92	2
0815_52	0.411356	0.1272	0.005	5.6392	0.305	0.323	0.0189	2055	69	1922	309	1804	121	12
0815_53	0.234976	0.1529	0.0064	5.7836	0.339	0.2821	0.0122	2375	71	1943	344	1601	78	32

Ne	Th/II			Изотопные от	ношения					Возраст, мл	ін лет			D, %
JI	11/0	207Pb/206Pb	1σ	207Pb/235U	1σ	206Pb/238U	1σ	207Pb/206Pb	1σ	207Pb/235U	1σ	206Pb/238U	1σ	-
0815_54	1.525085	0.1015	0.0029	2.1902	0.0927	0.1606	0.007	1650	52	1177	94	960	45	41
0815_55	0.442111	0.1603	0.0062	8.9381	0.4291	0.4149	0.0232	2455	65	2331	435	2237	149	8
0815_56	1.121676	0.1946	0.0099	2.4259	0.1916	0.0848	0.0042	2780	83	1250	194	524	27	81
0815_57	0.984221	0.1702	0.0065	8.1631	0.468	0.3567	0.0187	2555	64	2249	475	1966	120	23
0815_58	0.762848	0.1444	0.0029	8.4867	0.3529	0.4234	0.0162	2275	34	2284	358	2276	104	0
0815_59	0.555254	0.1272	0.0028	6.6385	0.2811	0.3747	0.0148	2055	39	2064	285	2051	95	0
0815_6	1.100403	0.1616	0.005	2.2426	0.1045	0.102	0.0049	2470	52	1194	106	626	31	74
0815_61	0.512529	0.1224	0.0024	6.3519	0.2596	0.3703	0.0129	1990	35	2025	263	2030	83	-2
0815_62	0.627963	0.3302	0.0075	24.3376	1.0291	0.5343	0.0201	3615	34	3282	1044	2759	129	23
0815_63	0.498876	0.1715	0.0061	8.7054	0.3839	0.3803	0.0167	2570	59	2307	389	2077	107	19
0815_64	1.442457	0.137	0.0037	6.6671	0.3031	0.3518	0.0142	2185	46	2068	307	1943	91	11
0815_65	0.506063	0.1274	0.0032	6.1168	0.2665	0.3522	0.014	2060	44	1992	270	1945	90	5
0815_66	0.45518	0.1549	0.0036	9.4401	0.4001	0.4457	0.0171	2400	40	2381	406	2375	110	1
0815_67	0.59214	0.1215	0.0047	5.4186	0.27	0.3243	0.0161	1975	69	1887	274	1810	103	8
0815_68	1.020357	0.1226	0.0035	3.1463	0.1494	0.1878	0.0083	1990	50	1444	151	1109	53	44
0815_69	1.429271	0.1173	0.0042	3.1346	0.1562	0.1974	0.0095	1910	63	1441	158	1161	61	39
0815_7	0.895526	0.1289	0.0046	6.0896	0.2982	0.345	0.0176	2080	63	1988	302	1910	113	8
0815_71	0.655762	0.1207	0.0017	6.4236	0.2565	0.3637	0.0115	1965	24	2035	260	1999	73	-1
0815_72	1.029531	0.1203	0.0016	2.6985	0.1134	0.1529	0.0052	1960	23	1328	115	917	33	53
0815_73	0.770371	0.143	0.0023	3.7747	0.1889	0.1726	0.0062	2260	27	1587	191	1026	39	54
0815_74	0.254946	0.1175	0.0012	6.0288	0.2386	0.3519	0.0111	1915	18	1980	242	1943	71	-1
0815_75	0.14504	0.1194	0.0011	6.462	0.254	0.3685	0.0112	1945	15	2040	257	2022	71	-3
0815_76	0.679047	0.1201	0.0013	6.5365	0.2588	0.3716	0.0115	1955	19	2050	262	2036	74	-4
0815_77	0.630014	0.1184	0.0015	6.2552	0.2514	0.3598	0.0114	1930	23	2012	255	1981	73	-2
0815_78	0.77696	0.1242	0.0019	6.8295	0.2769	0.3754	0.0119	2015	26	2089	281	2054	76	-1
0815_79	0.977143	0.1327	0.0013	4.2169	0.1871	0.2156	0.0078	2130	17	1677	190	1258	50	40
0815_8	0.403806	0.1348	0.0036	7.2009	0.3075	0.3933	0.0156	2160	46	2136	312	2137	100	1
0815_80	0.946427	0.3387	0.0039	6.7564	0.3712	0.13	0.0052	3655	17	2080	376	787	33	78

No			Возраст, млн лет											
212	11/0	207Pb/206Pb	1σ	207Pb/235U	1σ	206Pb/238U	1σ	207Pb/206Pb	1σ	207Pb/235U	1σ	206Pb/238U	1σ	-
0815_81	0.078642	0.1357	0.0012	6.9954	0.2753	0.3537	0.0109	2170	15	2110	279	1952	70	10
0815_82	1.185793	0.1337	0.0036	7.3707	0.32	0.3826	0.0171	2145	46	2157	324	2088	110	2
0815_83	0.584551	0.1048	0.001	2.6573	0.1103	0.173	0.0056	1710	17	1316	111	1028	36	39
0815_84	0.593965	0.134	0.0014	8.1635	0.3274	0.4182	0.0134	2150	17	2249	332	2252	86	-4
0815_85	0.270562	0.1711	0.0033	3.0036	0.1586	0.1178	0.0044	2565	31	1408	161	717	28	72
0815_86	1.09114	0.1391	0.001	8.5946	0.336	0.4237	0.0126	2215	12	2295	341	2277	81	-2
0815_87	0.734101	0.117	0.0013	6.0108	0.2352	0.3533	0.0107	1905	20	1977	238	1950	69	-2
0815_88	0.340966	0.1228	0.0018	6.3516	0.2493	0.3596	0.0117	1995	25	2025	253	1980	75	0
0815_89	0.938343	0.1268	0.0021	2.7631	0.1135	0.1505	0.0046	2050	28	1345	115	903	29	55
0815_9	0.20846	0.1256	0.0055	5.3269	0.2648	0.3116	0.0196	2035	78	1873	268	1748	126	14
0815_90	0.933093	0.1191	0.0054	5.1556	0.2943	0.3062	0.0199	1940	81	1845	298	1721	128	11
	1813 (анайская свита)													
PRB001	0.56	0.1238	0.0027	5.4273	0.1207	0.3182	0.0043	2010	39	1889	122	1781	27	11
PRB002	0.47	0.1135	0.0018	5.3249	0.0893	0.3406	0.0041	1855	28	1872	90	1889	26	-1
PRB003	0.82	0.114	0.0018	5.3059	0.0886	0.3377	0.0041	1860	28	1869	89	1875	26	0
PRB004	0.41	0.1156	0.0019	5.3599	0.0934	0.3365	0.0041	1885	30	1878	94	1869	26	0
PRB005	2.10	0.7009	0.0109	68.3002	1.1195	0.7074	0.0088	4730	22	4303	1136	3448	56	27
PRB006	0.63	0.1151	0.002	5.338	0.0946	0.3366	0.0042	1880	30	1874	96	1870	26	0
PRB007	0.46	0.1134	0.0021	5.2172	0.0975	0.3339	0.0042	1850	32	1855	99	1857	27	0
PRB008	0.58	0.1207	0.0022	5.5956	0.1048	0.3366	0.0042	1965	32	1915	106	1870	27	4
PRB009	0.67	0.1151	0.0019	5.3581	0.0944	0.3381	0.0042	1880	30	1878	95	1877	26	0
PRB010	0.27	0.2717	0.0052	4.012	0.077	0.1072	0.0014	3315	29	1636	78	656	9	80
PRB011	0.63	0.1154	0.002	5.3077	0.0962	0.3339	0.0041	1885	31	1870	97	1857	26	1
PRB012	0.57	0.1322	0.0023	5.5015	0.0975	0.302	0.0037	2125	29	1900	99	1701	23	19
PRB013	0.23	0.1145	0.0023	5.3158	0.1104	0.3369	0.0044	1870	36	1871	112	1871	28	0
PRB014	0.37	0.1172	0.002	5.3388	0.0934	0.3306	0.004	1910	30	1875	94	1841	26	3
PRB015	0.64	0.1122	0.002	5.1864	0.0958	0.3356	0.0042	1830	32	1850	97	1865	26	-1
PRB016	0.45	0.3263	0.0081	6.3247	0.1504	0.1407	0.0022	3595	38	2021	152	848	14	76

No	Th/II			Изотопные от	ношения		Возраст, млн лет							
J1≌	111/0	207Pb/206Pb	1σ	207Pb/235U	1σ	206Pb/238U	1σ	207Pb/206Pb	1σ	207Pb/235U	1σ	206Pb/238U	1σ	
PRB017	0.38	0.1579	0.0051	2.4374	0.0758	0.112	0.0018	2430	54	1253	76	684	11	71
PRB018	0.56	0.1164	0.0022	5.2905	0.1047	0.33	0.0042	1900	34	1867	106	1838	27	3
PRB019	0.78	0.1179	0.0022	5.5648	0.1057	0.3427	0.0043	1920	33	1910	107	1899	27	1
PRB020	0.63	0.1121	0.002	5.1961	0.0949	0.3365	0.0041	1830	32	1851	96	1869	26	-2
PRB021	0.53	0.101	0.0018	2.4874	0.0453	0.1787	0.0022	1640	32	1268	46	1059	14	35
PRB022	0.45	0.1144	0.0024	5.2769	0.1119	0.3348	0.0043	1865	37	1865	113	1861	27	0
PRB023	0.60	0.1164	0.003	5.4818	0.1415	0.3417	0.0049	1900	46	1897	143	1894	31	0
PRB024	0.60	0.1134	0.002	5.26	0.0976	0.3366	0.0041	1850	32	1862	99	1870	26	-1
PRB025	0.74	0.1153	0.0021	5.2998	0.0981	0.3337	0.0041	1880	32	1868	99	1856	26	1
PRB026	0.73	0.1139	0.0021	5.2334	0.0971	0.3335	0.0041	1860	32	1858	98	1855	26	0
PRB027	0.54	0.111	0.0022	5.1875	0.1055	0.3391	0.0043	1815	36	1850	107	1882	27	-3
PRB028	0.71	0.1101	0.0021	5.0962	0.0977	0.336	0.0042	1795	34	1835	99	1867	26	-4
PRB029	0.70	0.1159	0.0023	5.2534	0.1076	0.3291	0.0042	1890	36	1861	109	1833	26	2
PRB030	0.56	0.1129	0.0022	5.2376	0.1035	0.3368	0.0042	1845	34	1858	105	1871	27	-1
PRB031	0.46	0.1121	0.0022	5.1639	0.1036	0.3343	0.0042	1830	35	1846	105	1859	26	-1
PRB032	0.47	0.1144	0.0024	5.2687	0.1109	0.3344	0.0043	1865	37	1863	112	1859	27	0
PRB033	0.11	0.1224	0.0023	2.4486	0.0476	0.1453	0.0018	1985	33	1257	48	874	11	55
PRB034	0.47	0.1367	0.0026	7.5908	0.1488	0.4029	0.005	2185	33	2183	151	2182	32	0
PRB035	0.61	0.1209	0.0024	5.9357	0.1206	0.3562	0.0045	1965	35	1966	122	1964	28	0
PRB036	0.67	0.1153	0.0024	5.3559	0.1134	0.3372	0.0043	1880	37	1877	115	1873	27	0
PRB037	0.45	0.2093	0.0049	8.2085	0.1896	0.2846	0.0039	2895	37	2254	192	1614	25	44
PRB038	0.69	0.1126	0.0023	5.1586	0.1084	0.3324	0.0042	1840	37	1845	110	1850	27	0
PRB039	0.50	0.4117	0.1832	83.388	117.7452	1.47	1.9832	3950	668	4503	119556	5828	12784	-47
PRB040	0.41	0.1124	0.0024	5.1878	0.1122	0.3349	0.0043	1835	38	1850	113	1861	27	-1
PRB041	0.56	0.1126	0.0023	5.2776	0.111	0.34	0.0043	1840	37	1865	112	1886	27	-2
PRB042	1.11	0.1138	0.0029	4.5501	0.1174	0.2901	0.004	1860	46	1740	119	1642	25	11
PRB043	6.67	0.29	0.0067	8.0792	0.1848	0.2022	0.0027	3415	35	2239	187	1187	17	65
PRB044	0.53	0.1555	0.0044	5.3989	0.152	0.252	0.0038	2405	48	1884	154	1448	24	39

No	ТЬ/∐			Изотопные от	ношения		Возраст, млн лет							
JIE	111/0	207Pb/206Pb	1σ	207Pb/235U	1σ	206Pb/238U	1σ	207Pb/206Pb	1σ	207Pb/235U	1σ	206Pb/238U	1σ	
PRB045	0.63	0.1126	0.0025	5.2169	0.1173	0.3361	0.0043	1823	43	1840	40	1868	27	-1
PRB046	0.56	0.1107	0.0025	5.2026	0.1195	0.3409	0.0044	1881	46	1810	41	1890	28	-4
PRB047	0.65	0.5832	0.0132	95.4411	2.1881	1.1876	0.0167	25021	1154	4465	32	5046	107	-13
PRB048	0.43	0.1205	0.0027	5.9458	0.1353	0.3581	0.0046	1910	47	1960	40	1973	29	0
PRB049	0.66	0.1114	0.0026	5.1973	0.1217	0.3385	0.0044	1779	43	1820	42	1879	28	-3
PRB050	0.86	0.1112	0.0025	5.187	0.1181	0.3386	0.0043	1868	44	1815	41	1879	27	-3
PRB052	0.83	0.1113	0.0026	5.1485	0.1214	0.3357	0.0043	1792	44	1815	43	1865	27	-2
PRB053	0.77	0.1135	0.0036	5.1122	0.1604	0.3268	0.005	1783	55	1855	57	1822	32	1
PRB054	0.61	0.3193	0.0084	6.7172	0.1736	0.1527	0.0022	3629	101	3565	40	915	14	74
PRB055	0.60	0.1128	0.0027	5.2151	0.1267	0.3356	0.0044	1835	47	1840	44	1865	28	-1
PRB056	1.72	0.4954	0.1961	125.5778	201.28	1.84	2.871	18694	36174	4225	584	6728	18507	-59
PRB057	1.08	0.1887	0.0031	12.9929	0.2227	0.4998	0.0062	2458	44	2730	26	2612	40	4
PRB058	0.47	0.1143	0.0019	5.3004	0.093	0.3365	0.0042	1850	34	1865	30	1869	26	0
PRB059	0.05	0.1417	0.0023	6.2253	0.1064	0.3189	0.0039	4629	101	2245	28	1784	25	20
PRB060	0.25	0.2344	0.0038	9.1966	0.1558	0.2848	0.0035	4999	97	3080	25	1615	22	47
PRB061	0.39	0.1718	0.0034	6.1703	0.124	0.2606	0.0034	3353	73	2570	32	1493	22	41
PRB062	0.86	0.0576	0.0011	0.6305	0.0124	0.0794	0.001	474	8	510	42	492	6	3
PRB063	0.70	0.1152	0.0022	5.3264	0.104	0.3357	0.0043	1822	36	1880	34	1865	27	0
PRB064	0.62	0.1305	0.0023	3.1231	0.0565	0.1737	0.0022	1578	29	2100	30	1032	13	50
PRB065	0.17	0.1603	0.0027	3.4599	0.0617	0.1567	0.0019	4051	80	2455	28	938	12	61
PRB066	1.16	0.1443	0.0031	6.8747	0.1487	0.3458	0.0046	2383	51	2275	36	1914	29	15
PRB067	0.66	0.1333	0.0027	5.44	0.1131	0.2963	0.0039	2139	46	2140	35	1672	24	21
PRB068	0.68	0.1142	0.0024	5.3168	0.1131	0.3379	0.0044	1866	41	1865	37	1876	28	0
PRB070	0.83	0.128	0.0026	5.7297	0.1207	0.3248	0.0042	2086	46	2070	36	1813	27	12
PRB071	0.56	0.1133	0.0024	5.3267	0.1167	0.3412	0.0044	1911	45	1850	38	1892	28	-2
PRB072	0.73	0.1143	0.0026	5.3275	0.1226	0.3384	0.0045	1869	45	1865	40	1878	28	0
PRB073	0.80	0.116	0.0027	5.326	0.1252	0.3333	0.0044	1863	46	1890	41	1854	28	1
PRB074	0.46	0.1231	0.0029	5.6352	0.1351	0.3322	0.0045	2357	62	2000	42	1848	28	7

No	Th/II		Возраст, млн лет											
JNG	J.2 11/0		1σ	207Pb/235U	1σ	206Pb/238U	1σ	207Pb/206Pb	1σ	207Pb/235U	1σ	206Pb/238U	1σ	
PRB076	0.62	0.1145	0.0027	5.3118	0.1264	0.3368	0.0045	1870	42	1870	128	1871	28	0
PRB077	0.84	0.7785	0.0178	147.4986	3.4506	1.3752	0.0184	4880	32	5077	3503	5576	118	-14
1020 (харгитуйская свита, Ш группа)														
746-3-01	0.61	0.12444	0.00129	6.21825	0.1466	0.36244	0.00826	2021	17	2007	21	1994	39	1
746-3-02	1.02	0.12146	0.00138	5.59744	0.1452	0.3343	0.00822	1978	19	1916	22	1859	40	6
746-3-03	0.93	0.12423	0.00128	6.0473	0.14127	0.35307	0.0079	2018	17	1983	20	1949	38	4
746-3-04	0.33	0.12074	0.00125	5.80898	0.1361	0.34896	0.00789	1967	17	1948	20	1930	38	2
746-3-05	0.42	0.16946	0.00174	11.55934	0.26969	0.49476	0.01118	2552	16	2569	22	2591	48	-2
746-3-06	0.51	0.11333	0.00117	5.2651	0.12387	0.33698	0.00763	1853	18	1863	20	1872	37	-1
746-3-07	0.42	0.11362	0.00119	5.19937	0.12386	0.33193	0.00753	1858	18	1853	20	1848	36	1
746-3-08	0.47	0.1117	0.0012	4.87524	0.11944	0.31659	0.00736	1827	18	1798	21	1773	36	3
746-3-09	1.75	0.11085	0.00125	5.11963	0.1322	0.33504	0.00805	1813	19	1839	22	1863	39	-3
746-3-10	0.29	0.11395	0.00126	5.23658	0.13311	0.33336	0.00783	1863	19	1859	22	1855	38	0
746-3-11	0.61	0.11272	0.00118	4.98041	0.11825	0.32046	0.00727	1844	18	1816	20	1792	35	3
746-3-12	0.54	0.11477	0.00121	5.033	0.12066	0.31807	0.00723	1876	18	1825	20	1780	35	5
746-3-13	0.73	0.11501	0.00494	2.7991	0.17975	0.17651	0.00471	1880	74	1355	48	1048	26	79
746-3-14	0.61	0.11506	0.00122	5.37236	0.12954	0.33863	0.00775	1881	18	1880	21	1880	37	0
746-3-15	0.42	0.11666	0.00123	5.55168	0.13324	0.34515	0.00786	1906	18	1909	21	1911	38	0
746-3-16	0.50	0.16509	0.00174	11.03914	0.26487	0.48498	0.01106	2508	17	2526	22	2549	48	-2
746-3-17	0.50	0.11369	0.00121	5.57116	0.13551	0.3554	0.0081	1859	18	1912	21	1960	39	-5
746-3-18	0.58	0.11456	0.00128	5.27219	0.13495	0.33379	0.00774	1873	19	1864	22	1857	37	1
746-3-19	0.35	0.07384	0.00327	1.07923	0.06703	0.106	0.00258	1037	85	743	33	649	15	14
746-3-20	0.51	0.11374	0.00123	4.88019	0.1209	0.31119	0.00716	1860	18	1799	21	1747	35	6
746-3-21	0.48	0.11248	0.00124	5.20567	0.13128	0.33569	0.00755	1840	19	1854	21	1866	36	-1
746-3-22	0.47	0.11306	0.00124	5.17317	0.12973	0.33187	0.00765	1849	19	1848	21	1847	37	0
746-3-23	0.46	0.11453	0.00121	5.24956	0.12599	0.33246	0.0076	1873	18	1861	20	1850	37	1
746-3-24	0.63	0.11439	0.00119	4.71908	0.1113	0.29921	0.0068	1870	18	1771	20	1687	34	11

Na	Th /T I		Возраст, млн лет											
JAG	10/0	207Pb/206Pb	1σ	207Pb/235U	1σ	206Pb/238U	1σ	207Pb/206Pb	1σ	207Pb/235U	1σ	206Pb/238U	1σ	D, %
746-3-25	0.44	0.12827	0.00134	6.75043	0.16056	0.38169	0.00867	2074	17	2079	21	2084	40	0
746-3-26	0.62	0.12361	0.00131	6.25594	0.15131	0.36709	0.00836	2009	18	2012	21	2016	39	0
746-3-27	0.63	0.14516	0.00152	8.57055	0.20426	0.42823	0.00972	2290	17	2293	22	2298	44	0
746-3-28	0.45	0.11439	0.00121	5.23537	0.12687	0.33194	0.00757	1870	18	1858	21	1848	37	1
746-3-29	0.47	0.11425	0.00121	5.23378	0.12618	0.33225	0.00754	1868	18	1858	21	1849	36	1
746-3-30	0.56	0.12395	0.00136	4.59906	0.11554	0.26912	0.00606	2014	18	1749	21	1536	31	31
746-3-31	0.45	0.11437	0.00123	5.32398	0.13089	0.33762	0.00769	1870	18	1873	21	1875	37	0
746-3-32	0.36	0.12129	0.00129	6.08393	0.14795	0.36383	0.00824	1975	18	1988	21	2000	39	-1
746-3-33	0.49	0.11515	0.00134	5.04913	0.135	0.31805	0.00749	1882	20	1828	23	1780	37	6

Примечание. Прямым шрифтом приведены конкордантные значения, курсивом – дискордантные. D – дискордантность датировок, вычислялась как, D=(Возраст (²⁰⁷Pb/²⁰⁶Pb) / Возраст (²⁰⁶Pb/²³⁸U)–1)·100 % для пород старше 1000 млн лет, D=(Возраст (²⁰⁷Pb/²³⁵U) / Возраст (²⁰⁶Pb/²³⁸U)–1)·100 % для пород старше 1000 млн лет.